Spaces:
Runtime error
Runtime error
| # import torch | |
| # from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor | |
| # import gradio as gr | |
| # from PIL import Image | |
| # # Use a publicly available high-capacity model. | |
| # # For instance, we use "google/pix2struct-docvqa-large". | |
| # # (If you need a different model or a private one, adjust accordingly and add authentication if necessary.) | |
| # model_name = "google/pix2struct-docvqa-large" | |
| # model = Pix2StructForConditionalGeneration.from_pretrained(model_name) | |
| # processor = Pix2StructProcessor.from_pretrained(model_name) | |
| # def solve_problem(image): | |
| # try: | |
| # # Ensure the image is in RGB. | |
| # image = image.convert("RGB") | |
| # # Preprocess image and text prompt. | |
| # inputs = processor( | |
| # images=[image], | |
| # text="Solve the following problem:", | |
| # return_tensors="pt", | |
| # max_patches=2048 | |
| # ) | |
| # # Generate prediction. | |
| # predictions = model.generate( | |
| # **inputs, | |
| # max_new_tokens=200, | |
| # early_stopping=True, | |
| # num_beams=4, | |
| # temperature=0.2 | |
| # ) | |
| # # Decode the prompt (input IDs) and the generated output. | |
| # problem_text = processor.decode( | |
| # inputs["input_ids"][0], | |
| # skip_special_tokens=True, | |
| # clean_up_tokenization_spaces=True | |
| # ) | |
| # solution = processor.decode( | |
| # predictions[0], | |
| # skip_special_tokens=True, | |
| # clean_up_tokenization_spaces=True | |
| # ) | |
| # return f"Problem: {problem_text}\nSolution: {solution}" | |
| # except Exception as e: | |
| # return f"Error processing image: {str(e)}" | |
| # # Set up the Gradio interface. | |
| # iface = gr.Interface( | |
| # fn=solve_problem, | |
| # inputs=gr.Image(type="pil", label="Upload Your Problem Image", image_mode="RGB"), | |
| # outputs=gr.Textbox(label="Solution", show_copy_button=True), | |
| # title="Problem Solver with Pix2Struct", | |
| # description=( | |
| # "Upload an image (for example, a handwritten math or logic problem) " | |
| # "and get a solution generated by a high-capacity Pix2Struct model.\n\n" | |
| # "Note: For best results on domain-specific tasks, consider fine-tuning on your own dataset." | |
| # ), | |
| # examples=[ | |
| # ["example_problem1.png"], | |
| # ["example_problem2.jpg"] | |
| # ], | |
| # theme="soft", | |
| # allow_flagging="never" | |
| # ) | |
| # if __name__ == "__main__": | |
| # iface.launch() | |