Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,14 +2,15 @@ from KOKORO.models import build_model
|
|
| 2 |
from KOKORO.utils import tts,tts_file_name,podcast
|
| 3 |
import sys
|
| 4 |
sys.path.append('.')
|
|
|
|
|
|
|
| 5 |
import torch
|
| 6 |
import gc
|
| 7 |
print("Loading model...")
|
| 8 |
-
import os
|
| 9 |
-
os.system("python download_model.py")
|
| 10 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 11 |
print(f'Using device: {device}')
|
| 12 |
-
MODEL = build_model('./KOKORO/kokoro-v0_19.pth', device)
|
|
|
|
| 13 |
print("Model loaded successfully.")
|
| 14 |
|
| 15 |
def tts_maker(text,voice_name="af_bella",speed = 0.8,trim=0,pad_between=0,save_path="temp.wav",remove_silence=False,minimum_silence=50):
|
|
@@ -42,7 +43,8 @@ def update_model(model_name):
|
|
| 42 |
return f"Model updated to {model_name}"
|
| 43 |
|
| 44 |
|
| 45 |
-
|
|
|
|
| 46 |
"""
|
| 47 |
Converts text to speech using the specified parameters and ensures the model is updated only if necessary.
|
| 48 |
"""
|
|
@@ -218,17 +220,311 @@ with gr.Blocks() as demo2:
|
|
| 218 |
outputs=[audio]
|
| 219 |
)
|
| 220 |
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
with gr.Blocks() as demo3:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
gr.Markdown(f"# Voice Names \n{display_text}")
|
| 225 |
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
@click.
|
| 229 |
-
@click.option("--
|
| 230 |
-
|
| 231 |
-
|
|
|
|
| 232 |
|
| 233 |
demo.queue().launch(debug=debug, share=share)
|
| 234 |
#Run on local network
|
|
@@ -261,4 +557,4 @@ if __name__ == "__main__":
|
|
| 261 |
|
| 262 |
# save_at=f"./temp_audio/{os.path.basename(result)}"
|
| 263 |
# shutil.move(result, save_at)
|
| 264 |
-
# print(f"Saved at {save_at}")
|
|
|
|
| 2 |
from KOKORO.utils import tts,tts_file_name,podcast
|
| 3 |
import sys
|
| 4 |
sys.path.append('.')
|
| 5 |
+
import os
|
| 6 |
+
os.system("python download_model.py")
|
| 7 |
import torch
|
| 8 |
import gc
|
| 9 |
print("Loading model...")
|
|
|
|
|
|
|
| 10 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 11 |
print(f'Using device: {device}')
|
| 12 |
+
# MODEL = build_model('./KOKORO/kokoro-v0_19.pth', device)
|
| 13 |
+
MODEL = build_model('./KOKORO/fp16/kokoro-v0_19-half.pth', device)
|
| 14 |
print("Model loaded successfully.")
|
| 15 |
|
| 16 |
def tts_maker(text,voice_name="af_bella",speed = 0.8,trim=0,pad_between=0,save_path="temp.wav",remove_silence=False,minimum_silence=50):
|
|
|
|
| 43 |
return f"Model updated to {model_name}"
|
| 44 |
|
| 45 |
|
| 46 |
+
|
| 47 |
+
def text_to_speech(text, model_name="kokoro-v0_19-half.pth", voice_name="af", speed=1.0, trim=1.0, pad_between_segments=0, remove_silence=True, minimum_silence=0.20):
|
| 48 |
"""
|
| 49 |
Converts text to speech using the specified parameters and ensures the model is updated only if necessary.
|
| 50 |
"""
|
|
|
|
| 220 |
outputs=[audio]
|
| 221 |
)
|
| 222 |
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
import shutil
|
| 227 |
+
import os
|
| 228 |
+
|
| 229 |
+
# Ensure the output directory exists
|
| 230 |
+
output_dir = "./temp_audio"
|
| 231 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
#@title Generate Audio File From Subtitle
|
| 242 |
+
# from tqdm.notebook import tqdm
|
| 243 |
+
from tqdm import tqdm
|
| 244 |
+
import subprocess
|
| 245 |
+
import json
|
| 246 |
+
import pysrt
|
| 247 |
+
import os
|
| 248 |
+
from pydub import AudioSegment
|
| 249 |
+
import shutil
|
| 250 |
+
import uuid
|
| 251 |
+
import re
|
| 252 |
+
import time
|
| 253 |
+
|
| 254 |
+
# os.chdir(install_path)
|
| 255 |
+
|
| 256 |
+
def your_tts(text,audio_path,actual_duration,speed=1.0):
|
| 257 |
+
global srt_voice_name
|
| 258 |
+
model_name="kokoro-v0_19.pth"
|
| 259 |
+
tts_path=text_to_speech(text, model_name, voice_name=srt_voice_name,speed=speed)
|
| 260 |
+
print(tts_path)
|
| 261 |
+
tts_audio = AudioSegment.from_file(tts_path)
|
| 262 |
+
tts_duration = len(tts_audio)
|
| 263 |
+
if tts_duration > actual_duration:
|
| 264 |
+
speedup_factor = tts_duration / actual_duration
|
| 265 |
+
tts_path=text_to_speech(text, model_name, voice_name=srt_voice_name,speed=speedup_factor)
|
| 266 |
+
print(tts_path)
|
| 267 |
+
shutil.copy(tts_path,audio_path)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
base_path="."
|
| 272 |
+
import datetime
|
| 273 |
+
def get_current_time():
|
| 274 |
+
# Return current time as a string in the format HH_MM_AM/PM
|
| 275 |
+
return datetime.datetime.now().strftime("%I_%M_%p")
|
| 276 |
+
|
| 277 |
+
def get_subtitle_Dub_path(srt_file_path,Language="en"):
|
| 278 |
+
file_name = os.path.splitext(os.path.basename(srt_file_path))[0]
|
| 279 |
+
if not os.path.exists(f"{base_path}/TTS_DUB"):
|
| 280 |
+
os.mkdir(f"{base_path}/TTS_DUB")
|
| 281 |
+
random_string = str(uuid.uuid4())[:6]
|
| 282 |
+
new_path=f"{base_path}/TTS_DUB/{file_name}_{Language}_{get_current_time()}_{random_string}.wav"
|
| 283 |
+
return new_path
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def clean_srt(input_path):
|
| 293 |
+
file_name = os.path.basename(input_path)
|
| 294 |
+
output_folder = f"{base_path}/save_srt"
|
| 295 |
+
if not os.path.exists(output_folder):
|
| 296 |
+
os.mkdir(output_folder)
|
| 297 |
+
output_path = f"{output_folder}/{file_name}"
|
| 298 |
+
|
| 299 |
+
def clean_srt_line(text):
|
| 300 |
+
bad_list = ["[", "]", "♫", "\n"]
|
| 301 |
+
for i in bad_list:
|
| 302 |
+
text = text.replace(i, "")
|
| 303 |
+
return text.strip()
|
| 304 |
+
|
| 305 |
+
# Load the subtitle file
|
| 306 |
+
subs = pysrt.open(input_path)
|
| 307 |
+
|
| 308 |
+
# Iterate through each subtitle and print its details
|
| 309 |
+
with open(output_path, "w", encoding='utf-8') as file:
|
| 310 |
+
for sub in subs:
|
| 311 |
+
file.write(f"{sub.index}\n")
|
| 312 |
+
file.write(f"{sub.start} --> {sub.end}\n")
|
| 313 |
+
file.write(f"{clean_srt_line(sub.text)}\n")
|
| 314 |
+
file.write("\n")
|
| 315 |
+
file.close()
|
| 316 |
+
# print(f"Clean SRT saved at: {output_path}")
|
| 317 |
+
return output_path
|
| 318 |
+
# Example usage
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
|
| 325 |
+
class SRTDubbing:
|
| 326 |
+
def __init__(self):
|
| 327 |
+
pass
|
| 328 |
+
|
| 329 |
+
@staticmethod
|
| 330 |
+
def text_to_speech_srt(text, audio_path, language, actual_duration):
|
| 331 |
+
tts_filename = "./cache/temp.wav"
|
| 332 |
+
your_tts(text,tts_filename,actual_duration,speed=1.0)
|
| 333 |
+
# Check the duration of the generated TTS audio
|
| 334 |
+
tts_audio = AudioSegment.from_file(tts_filename)
|
| 335 |
+
tts_duration = len(tts_audio)
|
| 336 |
+
|
| 337 |
+
if actual_duration == 0:
|
| 338 |
+
# If actual duration is zero, use the original TTS audio without modifications
|
| 339 |
+
shutil.move(tts_filename, audio_path)
|
| 340 |
+
return
|
| 341 |
+
# If TTS audio duration is longer than actual duration, speed up the audio
|
| 342 |
+
if tts_duration > actual_duration:
|
| 343 |
+
speedup_factor = tts_duration / actual_duration
|
| 344 |
+
speedup_filename = "./cache/speedup_temp.wav"
|
| 345 |
+
# Use ffmpeg to change audio speed
|
| 346 |
+
subprocess.run([
|
| 347 |
+
"ffmpeg",
|
| 348 |
+
"-i", tts_filename,
|
| 349 |
+
"-filter:a", f"atempo={speedup_factor}",
|
| 350 |
+
speedup_filename,
|
| 351 |
+
"-y"
|
| 352 |
+
], check=True)
|
| 353 |
+
|
| 354 |
+
# Replace the original TTS audio with the sped-up version
|
| 355 |
+
shutil.move(speedup_filename, audio_path)
|
| 356 |
+
elif tts_duration < actual_duration:
|
| 357 |
+
# If TTS audio duration is less than actual duration, add silence to match the duration
|
| 358 |
+
silence_gap = actual_duration - tts_duration
|
| 359 |
+
silence = AudioSegment.silent(duration=int(silence_gap))
|
| 360 |
+
new_audio = tts_audio + silence
|
| 361 |
+
|
| 362 |
+
# Save the new audio with added silence
|
| 363 |
+
new_audio.export(audio_path, format="wav")
|
| 364 |
+
else:
|
| 365 |
+
# If TTS audio duration is equal to actual duration, use the original TTS audio
|
| 366 |
+
shutil.move(tts_filename, audio_path)
|
| 367 |
+
|
| 368 |
+
@staticmethod
|
| 369 |
+
def make_silence(pause_time, pause_save_path):
|
| 370 |
+
silence = AudioSegment.silent(duration=pause_time)
|
| 371 |
+
silence.export(pause_save_path, format="wav")
|
| 372 |
+
return pause_save_path
|
| 373 |
+
|
| 374 |
+
@staticmethod
|
| 375 |
+
def create_folder_for_srt(srt_file_path):
|
| 376 |
+
srt_base_name = os.path.splitext(os.path.basename(srt_file_path))[0]
|
| 377 |
+
random_uuid = str(uuid.uuid4())[:4]
|
| 378 |
+
dummy_folder_path = f"{base_path}/dummy"
|
| 379 |
+
if not os.path.exists(dummy_folder_path):
|
| 380 |
+
os.makedirs(dummy_folder_path)
|
| 381 |
+
folder_path = os.path.join(dummy_folder_path, f"{srt_base_name}_{random_uuid}")
|
| 382 |
+
os.makedirs(folder_path, exist_ok=True)
|
| 383 |
+
return folder_path
|
| 384 |
+
|
| 385 |
+
@staticmethod
|
| 386 |
+
def concatenate_audio_files(audio_paths, output_path):
|
| 387 |
+
concatenated_audio = AudioSegment.silent(duration=0)
|
| 388 |
+
for audio_path in audio_paths:
|
| 389 |
+
audio_segment = AudioSegment.from_file(audio_path)
|
| 390 |
+
concatenated_audio += audio_segment
|
| 391 |
+
concatenated_audio.export(output_path, format="wav")
|
| 392 |
+
|
| 393 |
+
def srt_to_dub(self, srt_file_path,dub_save_path,language='en'):
|
| 394 |
+
result = self.read_srt_file(srt_file_path)
|
| 395 |
+
new_folder_path = self.create_folder_for_srt(srt_file_path)
|
| 396 |
+
join_path = []
|
| 397 |
+
for i in tqdm(result):
|
| 398 |
+
# for i in result:
|
| 399 |
+
text = i['text']
|
| 400 |
+
actual_duration = i['end_time'] - i['start_time']
|
| 401 |
+
pause_time = i['pause_time']
|
| 402 |
+
slient_path = f"{new_folder_path}/{i['previous_pause']}"
|
| 403 |
+
self.make_silence(pause_time, slient_path)
|
| 404 |
+
join_path.append(slient_path)
|
| 405 |
+
tts_path = f"{new_folder_path}/{i['audio_name']}"
|
| 406 |
+
self.text_to_speech_srt(text, tts_path, language, actual_duration)
|
| 407 |
+
join_path.append(tts_path)
|
| 408 |
+
self.concatenate_audio_files(join_path, dub_save_path)
|
| 409 |
+
|
| 410 |
+
@staticmethod
|
| 411 |
+
def convert_to_millisecond(time_str):
|
| 412 |
+
if isinstance(time_str, str):
|
| 413 |
+
hours, minutes, second_millisecond = time_str.split(':')
|
| 414 |
+
seconds, milliseconds = second_millisecond.split(",")
|
| 415 |
+
|
| 416 |
+
total_milliseconds = (
|
| 417 |
+
int(hours) * 3600000 +
|
| 418 |
+
int(minutes) * 60000 +
|
| 419 |
+
int(seconds) * 1000 +
|
| 420 |
+
int(milliseconds)
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
return total_milliseconds
|
| 424 |
+
@staticmethod
|
| 425 |
+
def read_srt_file(file_path):
|
| 426 |
+
entries = []
|
| 427 |
+
default_start = 0
|
| 428 |
+
previous_end_time = default_start
|
| 429 |
+
entry_number = 1
|
| 430 |
+
audio_name_template = "{}.wav"
|
| 431 |
+
previous_pause_template = "{}_before_pause.wav"
|
| 432 |
+
|
| 433 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 434 |
+
lines = file.readlines()
|
| 435 |
+
# print(lines)
|
| 436 |
+
for i in range(0, len(lines), 4):
|
| 437 |
+
time_info = re.findall(r'(\d+:\d+:\d+,\d+) --> (\d+:\d+:\d+,\d+)', lines[i + 1])
|
| 438 |
+
start_time = SRTDubbing.convert_to_millisecond(time_info[0][0])
|
| 439 |
+
end_time = SRTDubbing.convert_to_millisecond(time_info[0][1])
|
| 440 |
+
|
| 441 |
+
current_entry = {
|
| 442 |
+
'entry_number': entry_number,
|
| 443 |
+
'start_time': start_time,
|
| 444 |
+
'end_time': end_time,
|
| 445 |
+
'text': lines[i + 2].strip(),
|
| 446 |
+
'pause_time': start_time - previous_end_time if entry_number != 1 else start_time - default_start,
|
| 447 |
+
'audio_name': audio_name_template.format(entry_number),
|
| 448 |
+
'previous_pause': previous_pause_template.format(entry_number),
|
| 449 |
+
}
|
| 450 |
+
|
| 451 |
+
entries.append(current_entry)
|
| 452 |
+
previous_end_time = end_time
|
| 453 |
+
entry_number += 1
|
| 454 |
+
|
| 455 |
+
with open("entries.json", "w") as file:
|
| 456 |
+
json.dump(entries, file, indent=4)
|
| 457 |
+
return entries
|
| 458 |
+
srt_voice_name="am_adam"
|
| 459 |
+
def srt_process(srt_file_path,voice_name,dest_language="en"):
|
| 460 |
+
global srt_voice_name
|
| 461 |
+
srt_voice_name=voice_name
|
| 462 |
+
srt_dubbing = SRTDubbing()
|
| 463 |
+
dub_save_path=get_subtitle_Dub_path(srt_file_path,dest_language)
|
| 464 |
+
srt_dubbing.srt_to_dub(srt_file_path,dub_save_path,dest_language)
|
| 465 |
+
return dub_save_path
|
| 466 |
+
|
| 467 |
+
#
|
| 468 |
+
# srt_file_path="./long.srt"
|
| 469 |
+
# dub_audio_path=srt_process(srt_file_path)
|
| 470 |
+
# print(f"Audio file saved at: {dub_audio_path}")
|
| 471 |
+
|
| 472 |
+
|
| 473 |
|
| 474 |
with gr.Blocks() as demo3:
|
| 475 |
+
|
| 476 |
+
gr.Markdown(
|
| 477 |
+
"""
|
| 478 |
+
# Generate Audio File From Subtitle [Single Speaker Only]
|
| 479 |
+
|
| 480 |
+
To generate subtitles, you can use the [Whisper Turbo Subtitle](https://github.com/NeuralFalconYT/Whisper-Turbo-Subtitle)
|
| 481 |
+
|
| 482 |
+
[](https://colab.research.google.com/github/NeuralFalconYT/Whisper-Turbo-Subtitle/blob/main/Whisper_Turbo_Subtitle.ipynb)
|
| 483 |
+
"""
|
| 484 |
+
)
|
| 485 |
+
with gr.Row():
|
| 486 |
+
with gr.Column():
|
| 487 |
+
srt_file = gr.File(label='Upload .srt Subtitle File Only')
|
| 488 |
+
with gr.Row():
|
| 489 |
+
voice = gr.Dropdown(
|
| 490 |
+
voice_list,
|
| 491 |
+
value='af',
|
| 492 |
+
allow_custom_value=False,
|
| 493 |
+
label='Voice',
|
| 494 |
+
)
|
| 495 |
+
with gr.Row():
|
| 496 |
+
generate_btn_ = gr.Button('Generate', variant='primary')
|
| 497 |
+
|
| 498 |
+
with gr.Column():
|
| 499 |
+
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
|
| 500 |
+
with gr.Accordion('Enable Autoplay', open=False):
|
| 501 |
+
autoplay = gr.Checkbox(value=True, label='Autoplay')
|
| 502 |
+
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
|
| 503 |
+
|
| 504 |
+
# srt_file.submit(
|
| 505 |
+
# srt_process,
|
| 506 |
+
# inputs=[srt_file, voice],
|
| 507 |
+
# outputs=[audio]
|
| 508 |
+
# )
|
| 509 |
+
generate_btn_.click(
|
| 510 |
+
srt_process,
|
| 511 |
+
inputs=[srt_file,voice],
|
| 512 |
+
outputs=[audio]
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
display_text = " \n".join(voice_list)
|
| 517 |
+
|
| 518 |
+
with gr.Blocks() as demo4:
|
| 519 |
gr.Markdown(f"# Voice Names \n{display_text}")
|
| 520 |
|
| 521 |
+
|
| 522 |
+
# import click
|
| 523 |
+
# @click.command()
|
| 524 |
+
# @click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
|
| 525 |
+
# @click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
|
| 526 |
+
def main(debug=False, share=False):
|
| 527 |
+
demo = gr.TabbedInterface([demo1, demo2,demo3,demo4], ["Batched TTS", "Multiple Speech-Type Generation","SRT Dubbing","Available Voice Names"],title="Kokoro TTS")
|
| 528 |
|
| 529 |
demo.queue().launch(debug=debug, share=share)
|
| 530 |
#Run on local network
|
|
|
|
| 557 |
|
| 558 |
# save_at=f"./temp_audio/{os.path.basename(result)}"
|
| 559 |
# shutil.move(result, save_at)
|
| 560 |
+
# print(f"Saved at {save_at}")
|