Spaces:
Running
Running
| from huggingface_hub import list_repo_files, hf_hub_download | |
| import os | |
| import shutil | |
| import torch | |
| from itertools import combinations | |
| import platform | |
| # Repository ID | |
| repo_id = "hexgrad/Kokoro-82M" | |
| # Set up the cache directory | |
| cache_dir = "./cache" | |
| os.makedirs(cache_dir, exist_ok=True) | |
| # Set up the base model paths | |
| KOKORO_DIR = "./KOKORO" | |
| VOICES_DIR = os.path.join(KOKORO_DIR, "voices") | |
| FP16_DIR = os.path.join(KOKORO_DIR, "fp16") | |
| KOKORO_FILE = "kokoro-v0_19.pth" | |
| FP16_FILE = "fp16/kokoro-v0_19-half.pth" | |
| def download_files(repo_id, filenames, destination_dir, cache_dir): | |
| # Ensure directories exist | |
| os.makedirs(destination_dir, exist_ok=True) | |
| for filename in filenames: | |
| destination = os.path.join(destination_dir, os.path.basename(filename)) | |
| if not os.path.exists(destination): | |
| file_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir) | |
| shutil.copy(file_path, destination) | |
| print(f"Downloaded and saved: {destination}") | |
| else: | |
| print(f"File already exist in: {destination}") | |
| def get_voice_models(): | |
| """Downloads missing voice models from the Hugging Face repository.""" | |
| # Create or empty the 'voices' directory | |
| # if os.path.exists(VOICES_DIR): | |
| # shutil.rmtree(VOICES_DIR) | |
| os.makedirs(VOICES_DIR, exist_ok=True) | |
| # Get list of files from the repository | |
| files = list_repo_files(repo_id) | |
| # Filter for voice files | |
| voice_files = [file.replace("voices/", "") for file in files if file.startswith("voices/")] | |
| # Get current voice files | |
| current_voice = os.listdir(VOICES_DIR) | |
| # Download new voices | |
| download_voice = [file for file in voice_files if file not in current_voice] | |
| if download_voice: | |
| # print(f"Files to download: {download_voice}") | |
| pass | |
| download_files(repo_id, [f"voices/{file}" for file in download_voice], VOICES_DIR, cache_dir) | |
| def download_base_models(): | |
| """Downloads Kokoro base model and fp16 version if missing.""" | |
| download_files(repo_id, [KOKORO_FILE], KOKORO_DIR, cache_dir) | |
| download_files(repo_id, [FP16_FILE], FP16_DIR, cache_dir) | |
| def setup_batch_file(): | |
| """Creates a 'run_app.bat' file for Windows if it doesn't exist.""" | |
| if platform.system() == "Windows": | |
| bat_file_name = 'run_app.bat' | |
| if not os.path.exists(bat_file_name): | |
| bat_content_app = '''@echo off | |
| call myenv\\Scripts\\activate | |
| @python.exe app.py %* | |
| @pause | |
| ''' | |
| with open(bat_file_name, 'w') as bat_file: | |
| bat_file.write(bat_content_app) | |
| print(f"Created '{bat_file_name}'.") | |
| else: | |
| print(f"'{bat_file_name}' already exists.") | |
| else: | |
| print("Not a Windows system, skipping batch file creation.") | |
| def download_ffmpeg(): | |
| """Downloads ffmpeg and ffprobe executables from Hugging Face.""" | |
| print("For Kokoro TTS we don't need ffmpeg, But for Subtitle Dubbing we need ffmpeg") | |
| os_name=platform.system() | |
| if os_name == "Windows": | |
| repo_id = "fishaudio/fish-speech-1" | |
| filenames = ["ffmpeg.exe", "ffprobe.exe"] | |
| ffmpeg_dir = "./ffmpeg" | |
| download_files(repo_id, filenames, ffmpeg_dir, cache_dir) | |
| elif os_name == "Linux": | |
| print("Please install ffmpeg using the package manager for your system.") | |
| print("'sudo apt install ffmpeg' on Debian/Ubuntu") | |
| else: | |
| print(f"Manually install ffmpeg for {os_name} from https://ffmpeg.org/download.html") | |
| def mix_all_voices(folder_path=VOICES_DIR): | |
| """Mix all pairs of voice models and save the new models.""" | |
| # Get the list of available voice packs | |
| available_voice_pack = [ | |
| os.path.splitext(filename)[0] | |
| for filename in os.listdir(folder_path) | |
| if filename.endswith('.pt') | |
| ] | |
| # Generate all unique pairs of voices | |
| voice_combinations = combinations(available_voice_pack, 2) | |
| # Function to mix two voices | |
| def mix_model(voice_1, voice_2): | |
| """Mix two voice models and save the new model.""" | |
| new_name = f"{voice_1}_mix_{voice_2}" | |
| voice_id_1 = torch.load(f'{folder_path}/{voice_1}.pt', weights_only=True) | |
| voice_id_2 = torch.load(f'{folder_path}/{voice_2}.pt', weights_only=True) | |
| # Create the mixed model by averaging the weights | |
| mixed_voice = torch.mean(torch.stack([voice_id_1, voice_id_2]), dim=0) | |
| # Save the mixed model | |
| torch.save(mixed_voice, f'{folder_path}/{new_name}.pt') | |
| print(f"Created new voice model: {new_name}") | |
| # Create mixed voices for each pair | |
| for voice_1, voice_2 in voice_combinations: | |
| print(f"Mixing {voice_1} ❤️ {voice_2}") | |
| mix_model(voice_1, voice_2) | |
| def save_voice_names(directory=VOICES_DIR, output_file="./voice_names.txt"): | |
| """ | |
| Retrieves voice names from a directory, sorts them by length, and saves to a file. | |
| Parameters: | |
| directory (str): Directory containing the voice files. | |
| output_file (str): File to save the sorted voice names. | |
| Returns: | |
| None | |
| """ | |
| # Get the list of voice names without file extensions | |
| voice_list = [ | |
| os.path.splitext(filename)[0] | |
| for filename in os.listdir(directory) | |
| if filename.endswith('.pt') | |
| ] | |
| # Sort the list based on the length of each name | |
| voice_list = sorted(voice_list, key=len) | |
| # Save the sorted list to the specified file | |
| with open(output_file, "w") as f: | |
| for voice_name in voice_list: | |
| f.write(f"{voice_name}\n") | |
| print(f"Voice names saved to {output_file}") | |
| # --- Main Execution --- | |
| if __name__ == "__main__": | |
| get_voice_models() | |
| download_base_models() | |
| setup_batch_file() | |
| # mix_all_voices() | |
| save_voice_names() | |
| download_ffmpeg() | |
| print("Setup complete!") |