Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import tempfile
|
| 3 |
+
import uuid
|
| 4 |
+
import os
|
| 5 |
+
import re
|
| 6 |
+
import numpy as np
|
| 7 |
+
import soundfile as sf
|
| 8 |
+
from kittentts import KittenTTS
|
| 9 |
+
from tqdm.auto import tqdm
|
| 10 |
+
# Initialize the TTS model
|
| 11 |
+
model = KittenTTS("KittenML/kitten-tts-nano-0.1")
|
| 12 |
+
|
| 13 |
+
def split_text_into_chunks(text, chunk_size=400):
|
| 14 |
+
"""
|
| 15 |
+
Split long text into smaller chunks of max length `chunk_size`.
|
| 16 |
+
"""
|
| 17 |
+
# Split by punctuation followed by space (preserves sentence boundaries)
|
| 18 |
+
sentences = re.split(r'(?<=[.!?]) +', text)
|
| 19 |
+
|
| 20 |
+
chunks = []
|
| 21 |
+
current_chunk = ""
|
| 22 |
+
|
| 23 |
+
for sentence in sentences:
|
| 24 |
+
if len(current_chunk) + len(sentence) > chunk_size:
|
| 25 |
+
if current_chunk:
|
| 26 |
+
chunks.append(current_chunk.strip())
|
| 27 |
+
current_chunk = ""
|
| 28 |
+
current_chunk += sentence + " "
|
| 29 |
+
|
| 30 |
+
if current_chunk:
|
| 31 |
+
chunks.append(current_chunk.strip())
|
| 32 |
+
|
| 33 |
+
return chunks
|
| 34 |
+
|
| 35 |
+
def generate_speech(text, voice, speed):
|
| 36 |
+
"""
|
| 37 |
+
Generate speech from long text in a memory-efficient way.
|
| 38 |
+
Writes chunks directly to a shared WAV file instead of keeping them in memory.
|
| 39 |
+
"""
|
| 40 |
+
if not text.strip():
|
| 41 |
+
return None, "Please enter some text to generate speech."
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
# Break text into manageable chunks
|
| 45 |
+
chunks = split_text_into_chunks(text, chunk_size=400)
|
| 46 |
+
|
| 47 |
+
# Shared output directory (update this path to your shared disk)
|
| 48 |
+
shared_dir = "./saved_audio"
|
| 49 |
+
os.makedirs(shared_dir, exist_ok=True)
|
| 50 |
+
|
| 51 |
+
unique_filename = f"kitten_tts_{uuid.uuid4()}.wav"
|
| 52 |
+
output_path = os.path.join(shared_dir, unique_filename)
|
| 53 |
+
|
| 54 |
+
# Open the WAV file for writing
|
| 55 |
+
with sf.SoundFile(output_path, mode='w', samplerate=24000, channels=1, subtype='PCM_16') as f:
|
| 56 |
+
for chunk in tqdm(chunks, desc="Streaming audio to disk", unit="chunk"):
|
| 57 |
+
audio = model.generate(chunk, voice=voice, speed=speed)
|
| 58 |
+
f.write(audio) # Write audio directly to disk
|
| 59 |
+
|
| 60 |
+
return output_path
|
| 61 |
+
except Exception as e:
|
| 62 |
+
return None, f"Error during TTS generation: {str(e)}"
|
| 63 |
+
|
| 64 |
+
def get_available_voices():
|
| 65 |
+
"""Get list of available voices from the model."""
|
| 66 |
+
try:
|
| 67 |
+
voices = model.available_voices
|
| 68 |
+
return voices if voices else ["expr-voice-5-m"]
|
| 69 |
+
except:
|
| 70 |
+
return ["expr-voice-5-m"]
|
| 71 |
+
|
| 72 |
+
# Get voices once on load
|
| 73 |
+
available_voices = get_available_voices()
|
| 74 |
+
|
| 75 |
+
# Create Gradio UI
|
| 76 |
+
with gr.Blocks(title="KittenTTS - Text to Speech", theme=gr.themes.Soft()) as app:
|
| 77 |
+
gr.Markdown("# 🐱 KittenTTS - Text to Speech Generator")
|
| 78 |
+
gr.Markdown("Convert your text to high-quality speech using the KittenTTS nano model!")
|
| 79 |
+
|
| 80 |
+
with gr.Row():
|
| 81 |
+
with gr.Column(scale=2):
|
| 82 |
+
text_input = gr.Textbox(
|
| 83 |
+
label="Text to Convert",
|
| 84 |
+
placeholder="Enter the text you want to convert to speech...",
|
| 85 |
+
lines=4,
|
| 86 |
+
max_lines=10
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
with gr.Row():
|
| 90 |
+
voice_dropdown = gr.Dropdown(
|
| 91 |
+
choices=available_voices,
|
| 92 |
+
value=available_voices[0],
|
| 93 |
+
label="Voice Selection",
|
| 94 |
+
info="Choose the voice for speech generation"
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
speed_slider = gr.Slider(
|
| 98 |
+
minimum=0.5,
|
| 99 |
+
maximum=2.0,
|
| 100 |
+
step=0.01,
|
| 101 |
+
value=1.25,
|
| 102 |
+
label="Speech Speed",
|
| 103 |
+
info="Adjust the speed of speech (0.5x to 2.0x)"
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
|
| 107 |
+
|
| 108 |
+
with gr.Column(scale=1):
|
| 109 |
+
audio_output = gr.Audio(
|
| 110 |
+
label="Generated Speech",
|
| 111 |
+
type="filepath",
|
| 112 |
+
interactive=False,
|
| 113 |
+
autoplay=True
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
gr.Markdown("## 📝 Example Texts")
|
| 117 |
+
gr.Examples(
|
| 118 |
+
examples=[
|
| 119 |
+
["Hello! This is a test of the KittenTTS model.", available_voices[0], 1.25],
|
| 120 |
+
["The quick brown fox jumps over the lazy dog.", available_voices[0], 1.5],
|
| 121 |
+
["Welcome to the world of high-quality text-to-speech synthesis!", available_voices[0], 1.0],
|
| 122 |
+
],
|
| 123 |
+
inputs=[text_input, voice_dropdown, speed_slider],
|
| 124 |
+
outputs=[audio_output],
|
| 125 |
+
fn=generate_speech,
|
| 126 |
+
label="Click on an example to try it out",
|
| 127 |
+
# cache_examples="lazy"
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
with gr.Accordion("ℹ️ Model Information", open=False):
|
| 131 |
+
gr.Markdown("""
|
| 132 |
+
**Model:** `KittenML/kitten-tts-nano-0.1`
|
| 133 |
+
**Features:**
|
| 134 |
+
- High-quality text-to-speech synthesis
|
| 135 |
+
- Works without GPU acceleration
|
| 136 |
+
- Multiple voice options
|
| 137 |
+
- Adjustable speech speed
|
| 138 |
+
- 24kHz audio output
|
| 139 |
+
|
| 140 |
+
**Usage Instructions:**
|
| 141 |
+
1. Enter your text
|
| 142 |
+
2. Select a voice
|
| 143 |
+
3. Adjust the speech speed if needed
|
| 144 |
+
4. Click "Generate Speech"
|
| 145 |
+
""")
|
| 146 |
+
|
| 147 |
+
# Event Bindings
|
| 148 |
+
generate_btn.click(
|
| 149 |
+
fn=generate_speech,
|
| 150 |
+
inputs=[text_input, voice_dropdown, speed_slider],
|
| 151 |
+
outputs=[audio_output]
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
text_input.submit(
|
| 155 |
+
fn=generate_speech,
|
| 156 |
+
inputs=[text_input, voice_dropdown, speed_slider],
|
| 157 |
+
outputs=[audio_output]
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
# Run the app
|
| 161 |
+
if __name__ == "__main__":
|
| 162 |
+
app.queue().launch()
|