Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +799 -37
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,802 @@
|
|
| 1 |
-
import
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import numpy as np
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import plotly.express as px
|
| 5 |
import pandas as pd
|
| 6 |
+
from math import sin, cos, tan, asin, acos, atan2, sqrt, degrees, radians, pi
|
| 7 |
+
import time
|
| 8 |
+
|
| 9 |
+
def calculate_triangle_area(a, b, c):
|
| 10 |
+
"""Calculate triangle area using Heron's formula"""
|
| 11 |
+
s = (a + b + c) / 2 # semi-perimeter
|
| 12 |
+
area = sqrt(s * (s - a) * (s - b) * (s - c))
|
| 13 |
+
return area
|
| 14 |
+
|
| 15 |
+
def draw_triangle(side_a, side_b, side_c, angle_A, angle_B, angle_C, title="Triangle"):
|
| 16 |
+
"""Draw a triangle with labeled sides and angles using Plotly"""
|
| 17 |
+
|
| 18 |
+
# Place vertices (C at origin, B on x-axis)
|
| 19 |
+
C = np.array([0, 0])
|
| 20 |
+
B = np.array([side_a, 0])
|
| 21 |
+
A = np.array([side_b * cos(radians(angle_C)), side_b * sin(radians(angle_C))])
|
| 22 |
+
|
| 23 |
+
# Create triangle coordinates for plotting
|
| 24 |
+
triangle_x = [A[0], B[0], C[0], A[0]] # Close the triangle
|
| 25 |
+
triangle_y = [A[1], B[1], C[1], A[1]]
|
| 26 |
+
|
| 27 |
+
# Create the figure
|
| 28 |
+
fig = go.Figure()
|
| 29 |
+
|
| 30 |
+
# Add triangle fill
|
| 31 |
+
fig.add_trace(go.Scatter(
|
| 32 |
+
x=triangle_x,
|
| 33 |
+
y=triangle_y,
|
| 34 |
+
fill='toself',
|
| 35 |
+
fillcolor='rgba(173, 216, 230, 0.3)',
|
| 36 |
+
line=dict(color='blue', width=3),
|
| 37 |
+
mode='lines',
|
| 38 |
+
name='Triangle',
|
| 39 |
+
showlegend=False
|
| 40 |
+
))
|
| 41 |
+
|
| 42 |
+
# Add vertices
|
| 43 |
+
fig.add_trace(go.Scatter(
|
| 44 |
+
x=[A[0]], y=[A[1]],
|
| 45 |
+
mode='markers+text',
|
| 46 |
+
marker=dict(color='red', size=12),
|
| 47 |
+
text=['A'],
|
| 48 |
+
textposition='top center',
|
| 49 |
+
textfont=dict(size=16, color='black'),
|
| 50 |
+
name='Vertex A',
|
| 51 |
+
showlegend=True
|
| 52 |
+
))
|
| 53 |
+
|
| 54 |
+
fig.add_trace(go.Scatter(
|
| 55 |
+
x=[B[0]], y=[B[1]],
|
| 56 |
+
mode='markers+text',
|
| 57 |
+
marker=dict(color='green', size=12),
|
| 58 |
+
text=['B'],
|
| 59 |
+
textposition='bottom center',
|
| 60 |
+
textfont=dict(size=16, color='black'),
|
| 61 |
+
name='Vertex B',
|
| 62 |
+
showlegend=True
|
| 63 |
+
))
|
| 64 |
+
|
| 65 |
+
fig.add_trace(go.Scatter(
|
| 66 |
+
x=[C[0]], y=[C[1]],
|
| 67 |
+
mode='markers+text',
|
| 68 |
+
marker=dict(color='blue', size=12),
|
| 69 |
+
text=['C'],
|
| 70 |
+
textposition='middle left',
|
| 71 |
+
textfont=dict(size=16, color='black'),
|
| 72 |
+
name='Vertex C',
|
| 73 |
+
showlegend=True
|
| 74 |
+
))
|
| 75 |
+
|
| 76 |
+
# Calculate midpoints for side labels
|
| 77 |
+
mid_AB = (A + B) / 2
|
| 78 |
+
mid_BC = (B + C) / 2
|
| 79 |
+
mid_CA = (C + A) / 2
|
| 80 |
+
|
| 81 |
+
# Add side labels
|
| 82 |
+
fig.add_trace(go.Scatter(
|
| 83 |
+
x=[mid_AB[0]], y=[mid_AB[1]],
|
| 84 |
+
mode='text',
|
| 85 |
+
text=[f'c = {side_c:.2f}'],
|
| 86 |
+
textfont=dict(size=12, color='black'),
|
| 87 |
+
textposition='top center',
|
| 88 |
+
showlegend=False
|
| 89 |
+
))
|
| 90 |
+
|
| 91 |
+
fig.add_trace(go.Scatter(
|
| 92 |
+
x=[mid_BC[0]], y=[mid_BC[1]],
|
| 93 |
+
mode='text',
|
| 94 |
+
text=[f'a = {side_a:.2f}'],
|
| 95 |
+
textfont=dict(size=12, color='black'),
|
| 96 |
+
textposition='bottom center',
|
| 97 |
+
showlegend=False
|
| 98 |
+
))
|
| 99 |
+
|
| 100 |
+
fig.add_trace(go.Scatter(
|
| 101 |
+
x=[mid_CA[0]], y=[mid_CA[1]],
|
| 102 |
+
mode='text',
|
| 103 |
+
text=[f'b = {side_b:.2f}'],
|
| 104 |
+
textfont=dict(size=12, color='black'),
|
| 105 |
+
textposition='middle left',
|
| 106 |
+
showlegend=False
|
| 107 |
+
))
|
| 108 |
+
|
| 109 |
+
# Add angle labels
|
| 110 |
+
fig.add_trace(go.Scatter(
|
| 111 |
+
x=[A[0] - 0.3], y=[A[1] - 0.3],
|
| 112 |
+
mode='text',
|
| 113 |
+
text=[f'∠A = {angle_A:.1f}°'],
|
| 114 |
+
textfont=dict(size=10, color='black'),
|
| 115 |
+
showlegend=False
|
| 116 |
+
))
|
| 117 |
+
|
| 118 |
+
fig.add_trace(go.Scatter(
|
| 119 |
+
x=[B[0] + 0.2], y=[B[1] + 0.2],
|
| 120 |
+
mode='text',
|
| 121 |
+
text=[f'∠B = {angle_B:.1f}°'],
|
| 122 |
+
textfont=dict(size=10, color='black'),
|
| 123 |
+
showlegend=False
|
| 124 |
+
))
|
| 125 |
+
|
| 126 |
+
fig.add_trace(go.Scatter(
|
| 127 |
+
x=[C[0] + 0.2], y=[C[1] + 0.2],
|
| 128 |
+
mode='text',
|
| 129 |
+
text=[f'∠C = {angle_C:.1f}°'],
|
| 130 |
+
textfont=dict(size=10, color='black'),
|
| 131 |
+
showlegend=False
|
| 132 |
+
))
|
| 133 |
+
|
| 134 |
+
# Set layout
|
| 135 |
+
all_x = [A[0], B[0], C[0]]
|
| 136 |
+
all_y = [A[1], B[1], C[1]]
|
| 137 |
+
margin = 1.0
|
| 138 |
+
|
| 139 |
+
fig.update_layout(
|
| 140 |
+
title=dict(text=title, font=dict(size=18, color='black'), x=0.5),
|
| 141 |
+
xaxis=dict(
|
| 142 |
+
range=[min(all_x) - margin, max(all_x) + margin],
|
| 143 |
+
showgrid=True,
|
| 144 |
+
gridcolor='lightgray',
|
| 145 |
+
zeroline=True,
|
| 146 |
+
zerolinecolor='gray'
|
| 147 |
+
),
|
| 148 |
+
yaxis=dict(
|
| 149 |
+
range=[min(all_y) - margin, max(all_y) + margin],
|
| 150 |
+
showgrid=True,
|
| 151 |
+
gridcolor='lightgray',
|
| 152 |
+
zeroline=True,
|
| 153 |
+
zerolinecolor='gray',
|
| 154 |
+
scaleanchor="x",
|
| 155 |
+
scaleratio=1
|
| 156 |
+
),
|
| 157 |
+
plot_bgcolor='white',
|
| 158 |
+
paper_bgcolor='white',
|
| 159 |
+
width=700,
|
| 160 |
+
height=600,
|
| 161 |
+
margin=dict(l=50, r=50, t=80, b=50)
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
return fig
|
| 165 |
+
|
| 166 |
+
def draw_vectors(a_x, a_y, b_x, b_y, angle_between):
|
| 167 |
+
"""Draw two vectors and show the angle between them using Plotly"""
|
| 168 |
+
|
| 169 |
+
fig = go.Figure()
|
| 170 |
+
|
| 171 |
+
# Draw vectors from origin
|
| 172 |
+
fig.add_trace(go.Scatter(
|
| 173 |
+
x=[0, a_x], y=[0, a_y],
|
| 174 |
+
mode='lines+markers',
|
| 175 |
+
line=dict(color='red', width=4),
|
| 176 |
+
marker=dict(symbol='arrow', angle=90, size=15, color='red'),
|
| 177 |
+
name=f'Vector A ({a_x:.2f}, {a_y:.2f})'
|
| 178 |
+
))
|
| 179 |
+
|
| 180 |
+
fig.add_trace(go.Scatter(
|
| 181 |
+
x=[0, b_x], y=[0, b_y],
|
| 182 |
+
mode='lines+markers',
|
| 183 |
+
line=dict(color='blue', width=4),
|
| 184 |
+
marker=dict(symbol='arrow', angle=90, size=15, color='blue'),
|
| 185 |
+
name=f'Vector B ({b_x:.2f}, {b_y:.2f})'
|
| 186 |
+
))
|
| 187 |
+
|
| 188 |
+
# Create angle arc
|
| 189 |
+
magnitude_a = sqrt(a_x**2 + a_y**2)
|
| 190 |
+
magnitude_b = sqrt(b_x**2 + b_y**2)
|
| 191 |
+
|
| 192 |
+
angle_a = atan2(a_y, a_x)
|
| 193 |
+
angle_b = atan2(b_y, b_x)
|
| 194 |
+
|
| 195 |
+
if angle_a < angle_b:
|
| 196 |
+
arc_angles = np.linspace(angle_a, angle_b, 50)
|
| 197 |
+
else:
|
| 198 |
+
arc_angles = np.linspace(angle_b, angle_a, 50)
|
| 199 |
+
|
| 200 |
+
arc_radius = min(magnitude_a, magnitude_b) * 0.3
|
| 201 |
+
arc_x = arc_radius * np.cos(arc_angles)
|
| 202 |
+
arc_y = arc_radius * np.sin(arc_angles)
|
| 203 |
+
|
| 204 |
+
# Add angle arc
|
| 205 |
+
fig.add_trace(go.Scatter(
|
| 206 |
+
x=arc_x, y=arc_y,
|
| 207 |
+
mode='lines',
|
| 208 |
+
line=dict(color='green', width=4),
|
| 209 |
+
showlegend=False
|
| 210 |
+
))
|
| 211 |
+
|
| 212 |
+
# Add angle label
|
| 213 |
+
mid_angle = (angle_a + angle_b) / 2
|
| 214 |
+
label_x = (arc_radius + 0.5) * cos(mid_angle)
|
| 215 |
+
label_y = (arc_radius + 0.5) * sin(mid_angle)
|
| 216 |
+
|
| 217 |
+
fig.add_trace(go.Scatter(
|
| 218 |
+
x=[label_x], y=[label_y],
|
| 219 |
+
mode='text',
|
| 220 |
+
text=[f'{angle_between:.1f}°'],
|
| 221 |
+
textfont=dict(size=14, color='green'),
|
| 222 |
+
showlegend=False
|
| 223 |
+
))
|
| 224 |
+
|
| 225 |
+
# Add vector endpoint labels
|
| 226 |
+
fig.add_trace(go.Scatter(
|
| 227 |
+
x=[a_x], y=[a_y],
|
| 228 |
+
mode='text',
|
| 229 |
+
text=['A'],
|
| 230 |
+
textfont=dict(size=16, color='red'),
|
| 231 |
+
textposition='top right',
|
| 232 |
+
showlegend=False
|
| 233 |
+
))
|
| 234 |
+
|
| 235 |
+
fig.add_trace(go.Scatter(
|
| 236 |
+
x=[b_x], y=[b_y],
|
| 237 |
+
mode='text',
|
| 238 |
+
text=['B'],
|
| 239 |
+
textfont=dict(size=16, color='blue'),
|
| 240 |
+
textposition='top right',
|
| 241 |
+
showlegend=False
|
| 242 |
+
))
|
| 243 |
+
|
| 244 |
+
# Set layout
|
| 245 |
+
max_range = max(magnitude_a, magnitude_b) * 1.2
|
| 246 |
+
|
| 247 |
+
fig.update_layout(
|
| 248 |
+
title=dict(text=f'Vectors with {angle_between:.1f}° angle between them',
|
| 249 |
+
font=dict(size=18, color='black'), x=0.5),
|
| 250 |
+
xaxis=dict(
|
| 251 |
+
range=[-max_range * 0.1, max_range],
|
| 252 |
+
showgrid=True,
|
| 253 |
+
gridcolor='lightgray',
|
| 254 |
+
zeroline=True,
|
| 255 |
+
zerolinecolor='black',
|
| 256 |
+
zerolinewidth=2
|
| 257 |
+
),
|
| 258 |
+
yaxis=dict(
|
| 259 |
+
range=[-max_range * 0.1, max_range],
|
| 260 |
+
showgrid=True,
|
| 261 |
+
gridcolor='lightgray',
|
| 262 |
+
zeroline=True,
|
| 263 |
+
zerolinecolor='black',
|
| 264 |
+
zerolinewidth=2,
|
| 265 |
+
scaleanchor="x",
|
| 266 |
+
scaleratio=1
|
| 267 |
+
),
|
| 268 |
+
plot_bgcolor='white',
|
| 269 |
+
paper_bgcolor='white',
|
| 270 |
+
width=700,
|
| 271 |
+
height=600,
|
| 272 |
+
margin=dict(l=50, r=50, t=80, b=50)
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
return fig
|
| 276 |
+
|
| 277 |
+
def law_of_sines_calculator():
|
| 278 |
+
st.header("📏 Law of Sines Calculator")
|
| 279 |
+
st.markdown("**Formula:** a/sin(A) = b/sin(B) = c/sin(C)")
|
| 280 |
+
st.markdown("**Equivalent:** sin(A)/a = sin(B)/b = sin(C)/c")
|
| 281 |
+
|
| 282 |
+
# Add formula explanation
|
| 283 |
+
with st.expander("📚 Understanding the Law of Sines"):
|
| 284 |
+
st.markdown("""
|
| 285 |
+
The Law of Sines can be written in two equivalent forms:
|
| 286 |
+
|
| 287 |
+
**Form 1:** a/sin(A) = b/sin(B) = c/sin(C)
|
| 288 |
+
|
| 289 |
+
**Form 2:** sin(A)/a = sin(B)/b = sin(C)/c
|
| 290 |
+
|
| 291 |
+
Both forms are mathematically identical and lead to the same calculations:
|
| 292 |
+
- To find a side: side = (other_side × sin(opposite_angle)) / sin(known_angle)
|
| 293 |
+
- To find an angle: sin(angle) = (opposite_side × sin(known_angle)) / known_side
|
| 294 |
+
|
| 295 |
+
**Use the Law of Sines when you have:**
|
| 296 |
+
- **AAS (Angle-Angle-Side)**: Two angles and one side
|
| 297 |
+
- **ASA (Angle-Side-Angle)**: Two angles and the included side
|
| 298 |
+
- **SSA (Side-Side-Angle)**: Two sides and one angle (ambiguous case)
|
| 299 |
+
""")
|
| 300 |
+
|
| 301 |
+
# Add a visual demonstration of the relationship
|
| 302 |
+
with st.expander("🔍 See the calculation steps"):
|
| 303 |
+
st.markdown("""
|
| 304 |
+
**Example calculation process:**
|
| 305 |
+
|
| 306 |
+
If we know: angle A, angle B, and side a
|
| 307 |
+
|
| 308 |
+
**Step 1:** Find angle C
|
| 309 |
+
C = 180° - A - B
|
| 310 |
+
|
| 311 |
+
**Step 2:** Use Law of Sines to find side b
|
| 312 |
+
From: a/sin(A) = b/sin(B)
|
| 313 |
+
|
| 314 |
+
Rearrange: b = (a × sin(B)) / sin(A)
|
| 315 |
+
|
| 316 |
+
**Step 3:** Find side c
|
| 317 |
+
From: a/sin(A) = c/sin(C)
|
| 318 |
+
|
| 319 |
+
Rearrange: c = (a × sin(C)) / sin(A)
|
| 320 |
+
""")
|
| 321 |
+
|
| 322 |
+
col1, col2 = st.columns([1, 1])
|
| 323 |
+
|
| 324 |
+
with col1:
|
| 325 |
+
st.subheader("📝 Input Triangle Data")
|
| 326 |
+
|
| 327 |
+
known_case = st.selectbox(
|
| 328 |
+
"What do you know about the triangle?",
|
| 329 |
+
["Two angles and one side (AAS/ASA)", "Two sides and one angle (SSA)"]
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
if known_case == "Two angles and one side (AAS/ASA)":
|
| 333 |
+
st.write("**Enter two angles and one side:**")
|
| 334 |
+
angle_A = st.number_input("Angle A (degrees):", min_value=0.1, max_value=179.9, value=60.0, key="sines_angleA")
|
| 335 |
+
angle_B = st.number_input("Angle B (degrees):", min_value=0.1, max_value=179.9, value=50.0, key="sines_angleB")
|
| 336 |
+
side_a = st.number_input("Side a (opposite to angle A):", min_value=0.1, value=10.0, key="sines_sidea")
|
| 337 |
+
|
| 338 |
+
# Calculate third angle
|
| 339 |
+
angle_C = 180 - angle_A - angle_B
|
| 340 |
+
|
| 341 |
+
if angle_C <= 0:
|
| 342 |
+
st.error("❌ Invalid triangle! Sum of angles must be less than 180°")
|
| 343 |
+
return
|
| 344 |
+
|
| 345 |
+
# Calculate other sides using Law of Sines
|
| 346 |
+
side_b = side_a * sin(radians(angle_B)) / sin(radians(angle_A))
|
| 347 |
+
side_c = side_a * sin(radians(angle_C)) / sin(radians(angle_A))
|
| 348 |
+
|
| 349 |
+
# Validate triangle
|
| 350 |
+
if side_b <= 0 or side_c <= 0:
|
| 351 |
+
st.error("❌ Invalid triangle! Check your inputs.")
|
| 352 |
+
return
|
| 353 |
+
|
| 354 |
+
else: # SSA case
|
| 355 |
+
st.write("**Enter two sides and one angle (ambiguous case):**")
|
| 356 |
+
side_a = st.number_input("Side a:", min_value=0.1, value=10.0, key="sines_ssa_sidea")
|
| 357 |
+
side_b = st.number_input("Side b:", min_value=0.1, value=8.0, key="sines_ssa_sideb")
|
| 358 |
+
angle_A = st.number_input("Angle A (opposite to side a):", min_value=0.1, max_value=179.9, value=60.0, key="sines_ssa_angleA")
|
| 359 |
+
|
| 360 |
+
# Check for validity
|
| 361 |
+
sin_B = side_b * sin(radians(angle_A)) / side_a
|
| 362 |
+
|
| 363 |
+
if sin_B > 1:
|
| 364 |
+
st.error("❌ No triangle possible with these measurements!")
|
| 365 |
+
return
|
| 366 |
+
elif abs(sin_B - 1) < 1e-10: # sin_B == 1 (within floating point precision)
|
| 367 |
+
angle_B = 90.0
|
| 368 |
+
angle_C = 90 - angle_A
|
| 369 |
+
side_c = side_a * cos(radians(angle_A))
|
| 370 |
+
st.info("✅ Right triangle solution found!")
|
| 371 |
+
else:
|
| 372 |
+
angle_B = degrees(asin(sin_B))
|
| 373 |
+
angle_C = 180 - angle_A - angle_B
|
| 374 |
+
side_c = side_a * sin(radians(angle_C)) / sin(radians(angle_A))
|
| 375 |
+
|
| 376 |
+
# Check for ambiguous case
|
| 377 |
+
if side_b < side_a and angle_A < 90:
|
| 378 |
+
angle_B2 = 180 - angle_B
|
| 379 |
+
angle_C2 = 180 - angle_A - angle_B2
|
| 380 |
+
if angle_C2 > 0:
|
| 381 |
+
side_c2 = side_a * sin(radians(angle_C2)) / sin(radians(angle_A))
|
| 382 |
+
st.warning(f"⚠️ Ambiguous case! Two triangles possible:")
|
| 383 |
+
st.write(f"**Triangle 1:** B = {angle_B:.2f}°, C = {angle_C:.2f}°, c = {side_c:.3f}")
|
| 384 |
+
st.write(f"**Triangle 2:** B = {angle_B2:.2f}°, C = {angle_C2:.2f}°, c = {side_c2:.3f}")
|
| 385 |
+
|
| 386 |
+
# Let user choose which triangle to display
|
| 387 |
+
triangle_choice = st.radio("Choose triangle to visualize:", ["Triangle 1", "Triangle 2"])
|
| 388 |
+
if triangle_choice == "Triangle 2":
|
| 389 |
+
angle_B, angle_C, side_c = angle_B2, angle_C2, side_c2
|
| 390 |
+
|
| 391 |
+
with col2:
|
| 392 |
+
st.subheader("📊 Results")
|
| 393 |
+
|
| 394 |
+
# Display results in a nice table
|
| 395 |
+
results_df = pd.DataFrame({
|
| 396 |
+
'Element': ['Side a', 'Side b', 'Side c', 'Angle A', 'Angle B', 'Angle C'],
|
| 397 |
+
'Value': [f'{side_a:.3f}', f'{side_b:.3f}', f'{side_c:.3f}',
|
| 398 |
+
f'{angle_A:.2f}°', f'{angle_B:.2f}°', f'{angle_C:.2f}°'],
|
| 399 |
+
'Type': ['Given' if known_case == "Two angles and one side (AAS/ASA)" else 'Given',
|
| 400 |
+
'Calculated' if known_case == "Two angles and one side (AAS/ASA)" else 'Given',
|
| 401 |
+
'Calculated',
|
| 402 |
+
'Given' if known_case == "Two angles and one side (AAS/ASA)" else 'Given',
|
| 403 |
+
'Given' if known_case == "Two angles and one side (AAS/ASA)" else 'Calculated',
|
| 404 |
+
'Calculated']
|
| 405 |
+
})
|
| 406 |
+
st.dataframe(results_df, use_container_width=True)
|
| 407 |
+
|
| 408 |
+
# Calculate area using formula: Area = (1/2)ab*sin(C)
|
| 409 |
+
area = 0.5 * side_a * side_b * sin(radians(angle_C))
|
| 410 |
+
perimeter = side_a + side_b + side_c
|
| 411 |
+
|
| 412 |
+
col_metric1, col_metric2 = st.columns(2)
|
| 413 |
+
with col_metric1:
|
| 414 |
+
st.metric("Area", f"{area:.3f} sq units")
|
| 415 |
+
with col_metric2:
|
| 416 |
+
st.metric("Perimeter", f"{perimeter:.3f} units")
|
| 417 |
+
|
| 418 |
+
# Draw the triangle
|
| 419 |
+
fig = draw_triangle(side_a, side_b, side_c, angle_A, angle_B, angle_C, "Law of Sines Triangle")
|
| 420 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 421 |
+
|
| 422 |
+
def law_of_cosines_calculator():
|
| 423 |
+
st.header("📐 Law of Cosines Calculator")
|
| 424 |
+
st.markdown("**Formula:** c² = a² + b² - 2ab⋅cos(C)")
|
| 425 |
+
|
| 426 |
+
# Add formula explanation
|
| 427 |
+
with st.expander("📚 When to use Law of Cosines"):
|
| 428 |
+
st.markdown("""
|
| 429 |
+
Use the Law of Cosines when you have:
|
| 430 |
+
- **SSS (Side-Side-Side)**: All three sides known
|
| 431 |
+
- **SAS (Side-Angle-Side)**: Two sides and the included angle
|
| 432 |
+
|
| 433 |
+
This is especially useful when the Law of Sines doesn't apply directly.
|
| 434 |
+
""")
|
| 435 |
+
|
| 436 |
+
col1, col2 = st.columns([1, 1])
|
| 437 |
+
|
| 438 |
+
with col1:
|
| 439 |
+
st.subheader("📝 Input Triangle Data")
|
| 440 |
+
|
| 441 |
+
known_case = st.selectbox(
|
| 442 |
+
"What do you know?",
|
| 443 |
+
["Three sides (SSS)", "Two sides and included angle (SAS)"]
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
if known_case == "Three sides (SSS)":
|
| 447 |
+
st.write("**Enter all three sides:**")
|
| 448 |
+
side_a = st.number_input("Side a:", min_value=0.1, value=5.0, key="cosines_sss_sidea")
|
| 449 |
+
side_b = st.number_input("Side b:", min_value=0.1, value=7.0, key="cosines_sss_sideb")
|
| 450 |
+
side_c = st.number_input("Side c:", min_value=0.1, value=9.0, key="cosines_sss_sidec")
|
| 451 |
+
|
| 452 |
+
# Check triangle inequality
|
| 453 |
+
if not (side_a + side_b > side_c and side_b + side_c > side_a and side_a + side_c > side_b):
|
| 454 |
+
st.error("❌ Invalid triangle! Triangle inequality not satisfied.")
|
| 455 |
+
st.write("**Triangle Inequality Rules:**")
|
| 456 |
+
st.write(f"• a + b > c: {side_a:.2f} + {side_b:.2f} = {side_a + side_b:.2f} {'✓' if side_a + side_b > side_c else '✗'} {side_c:.2f}")
|
| 457 |
+
st.write(f"• b + c > a: {side_b:.2f} + {side_c:.2f} = {side_b + side_c:.2f} {'✓' if side_b + side_c > side_a else '✗'} {side_a:.2f}")
|
| 458 |
+
st.write(f"• a + c > b: {side_a:.2f} + {side_c:.2f} = {side_a + side_c:.2f} {'✓' if side_a + side_c > side_b else '✗'} {side_b:.2f}")
|
| 459 |
+
return
|
| 460 |
+
|
| 461 |
+
# Calculate angles using Law of Cosines
|
| 462 |
+
try:
|
| 463 |
+
angle_A = degrees(acos((side_b**2 + side_c**2 - side_a**2) / (2 * side_b * side_c)))
|
| 464 |
+
angle_B = degrees(acos((side_a**2 + side_c**2 - side_b**2) / (2 * side_a * side_c)))
|
| 465 |
+
angle_C = 180 - angle_A - angle_B
|
| 466 |
+
except ValueError:
|
| 467 |
+
st.error("❌ Error calculating angles. Check your side lengths.")
|
| 468 |
+
return
|
| 469 |
+
|
| 470 |
+
else: # SAS case
|
| 471 |
+
st.write("**Enter two sides and the included angle:**")
|
| 472 |
+
side_a = st.number_input("Side a:", min_value=0.1, value=5.0, key="cosines_sas_sidea")
|
| 473 |
+
side_b = st.number_input("Side b:", min_value=0.1, value=7.0, key="cosines_sas_sideb")
|
| 474 |
+
angle_C = st.number_input("Angle C (between sides a and b):", min_value=0.1, max_value=179.9, value=60.0, key="cosines_sas_angleC")
|
| 475 |
+
|
| 476 |
+
# Calculate third side using Law of Cosines
|
| 477 |
+
side_c = sqrt(side_a**2 + side_b**2 - 2 * side_a * side_b * cos(radians(angle_C)))
|
| 478 |
+
|
| 479 |
+
# Calculate other angles using Law of Cosines
|
| 480 |
+
try:
|
| 481 |
+
angle_A = degrees(acos((side_b**2 + side_c**2 - side_a**2) / (2 * side_b * side_c)))
|
| 482 |
+
angle_B = 180 - angle_A - angle_C
|
| 483 |
+
except ValueError:
|
| 484 |
+
st.error("❌ Error calculating angles. Check your inputs.")
|
| 485 |
+
return
|
| 486 |
+
|
| 487 |
+
with col2:
|
| 488 |
+
st.subheader("📊 Results")
|
| 489 |
+
|
| 490 |
+
# Display results
|
| 491 |
+
results_df = pd.DataFrame({
|
| 492 |
+
'Element': ['Side a', 'Side b', 'Side c', 'Angle A', 'Angle B', 'Angle C'],
|
| 493 |
+
'Value': [f'{side_a:.3f}', f'{side_b:.3f}', f'{side_c:.3f}',
|
| 494 |
+
f'{angle_A:.2f}°', f'{angle_B:.2f}°', f'{angle_C:.2f}°'],
|
| 495 |
+
'Type': ['Given', 'Given',
|
| 496 |
+
'Given' if known_case == "Three sides (SSS)" else 'Calculated',
|
| 497 |
+
'Calculated', 'Calculated',
|
| 498 |
+
'Calculated' if known_case == "Three sides (SSS)" else 'Given']
|
| 499 |
+
})
|
| 500 |
+
st.dataframe(results_df, use_container_width=True)
|
| 501 |
+
|
| 502 |
+
# Calculate area and perimeter
|
| 503 |
+
area = calculate_triangle_area(side_a, side_b, side_c)
|
| 504 |
+
perimeter = side_a + side_b + side_c
|
| 505 |
+
|
| 506 |
+
col_metric1, col_metric2 = st.columns(2)
|
| 507 |
+
with col_metric1:
|
| 508 |
+
st.metric("Area", f"{area:.3f} sq units")
|
| 509 |
+
with col_metric2:
|
| 510 |
+
st.metric("Perimeter", f"{perimeter:.3f} units")
|
| 511 |
+
|
| 512 |
+
# Determine triangle type
|
| 513 |
+
if abs(angle_A - 90) < 0.01 or abs(angle_B - 90) < 0.01 or abs(angle_C - 90) < 0.01:
|
| 514 |
+
triangle_type = "Right Triangle"
|
| 515 |
+
elif angle_A > 90 or angle_B > 90 or angle_C > 90:
|
| 516 |
+
triangle_type = "Obtuse Triangle"
|
| 517 |
+
else:
|
| 518 |
+
triangle_type = "Acute Triangle"
|
| 519 |
+
|
| 520 |
+
st.info(f"**Triangle Type:** {triangle_type}")
|
| 521 |
+
|
| 522 |
+
# Draw the triangle
|
| 523 |
+
fig = draw_triangle(side_a, side_b, side_c, angle_A, angle_B, angle_C, "Law of Cosines Triangle")
|
| 524 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 525 |
+
|
| 526 |
+
def vector_angle_calculator():
|
| 527 |
+
st.header("🔄 Vector Angle Calculator")
|
| 528 |
+
st.markdown("**Formula:** cos(θ) = (A⋅B) / (|A|⋅|B|)")
|
| 529 |
+
|
| 530 |
+
# Add explanation
|
| 531 |
+
with st.expander("📚 Understanding Vector Angles"):
|
| 532 |
+
st.markdown("""
|
| 533 |
+
**Dot Product Formula:** A⋅B = |A||B|cos(θ)
|
| 534 |
+
|
| 535 |
+
**Applications:**
|
| 536 |
+
- Physics: Work = Force⋅Displacement⋅cos(θ)
|
| 537 |
+
- Computer Graphics: Lighting calculations
|
| 538 |
+
- Engineering: Force analysis
|
| 539 |
+
- Navigation: Direction calculations
|
| 540 |
+
""")
|
| 541 |
+
|
| 542 |
+
col1, col2 = st.columns([1, 1])
|
| 543 |
+
|
| 544 |
+
with col1:
|
| 545 |
+
st.subheader("📝 Enter Vectors")
|
| 546 |
+
|
| 547 |
+
# Vector input methods
|
| 548 |
+
input_method = st.radio("Input method:", ["Component form", "Magnitude & Direction"])
|
| 549 |
+
|
| 550 |
+
if input_method == "Component form":
|
| 551 |
+
st.write("**Vector A:**")
|
| 552 |
+
a_x = st.number_input("A_x component:", value=3.0, key="vector_ax")
|
| 553 |
+
a_y = st.number_input("A_y component:", value=4.0, key="vector_ay")
|
| 554 |
+
|
| 555 |
+
st.write("**Vector B:**")
|
| 556 |
+
b_x = st.number_input("B_x component:", value=1.0, key="vector_bx")
|
| 557 |
+
b_y = st.number_input("B_y component:", value=2.0, key="vector_by")
|
| 558 |
+
|
| 559 |
+
else:
|
| 560 |
+
st.write("**Vector A:**")
|
| 561 |
+
mag_a = st.number_input("Magnitude of A:", min_value=0.1, value=5.0, key="vector_mag_a")
|
| 562 |
+
dir_a = st.number_input("Direction of A (degrees):", value=53.0, key="vector_dir_a")
|
| 563 |
+
|
| 564 |
+
st.write("**Vector B:**")
|
| 565 |
+
mag_b = st.number_input("Magnitude of B:", min_value=0.1, value=2.24, key="vector_mag_b")
|
| 566 |
+
dir_b = st.number_input("Direction of B (degrees):", value=63.4, key="vector_dir_b")
|
| 567 |
+
|
| 568 |
+
# Convert to components
|
| 569 |
+
a_x = mag_a * cos(radians(dir_a))
|
| 570 |
+
a_y = mag_a * sin(radians(dir_a))
|
| 571 |
+
b_x = mag_b * cos(radians(dir_b))
|
| 572 |
+
b_y = mag_b * sin(radians(dir_b))
|
| 573 |
+
|
| 574 |
+
# Calculate vector properties
|
| 575 |
+
dot_product = a_x * b_x + a_y * b_y
|
| 576 |
+
magnitude_a = sqrt(a_x**2 + a_y**2)
|
| 577 |
+
magnitude_b = sqrt(b_x**2 + b_y**2)
|
| 578 |
+
|
| 579 |
+
if magnitude_a == 0 or magnitude_b == 0:
|
| 580 |
+
st.error("❌ Zero vector detected! Cannot calculate angle.")
|
| 581 |
+
return
|
| 582 |
+
|
| 583 |
+
cos_theta = dot_product / (magnitude_a * magnitude_b)
|
| 584 |
+
# Clamp to [-1, 1] to avoid floating point errors
|
| 585 |
+
cos_theta = max(-1, min(1, cos_theta))
|
| 586 |
+
angle_degrees = degrees(acos(cos_theta))
|
| 587 |
+
|
| 588 |
+
# Calculate cross product for 2D (gives scalar)
|
| 589 |
+
cross_product = a_x * b_y - a_y * b_x
|
| 590 |
+
|
| 591 |
+
with col2:
|
| 592 |
+
st.subheader("📊 Results")
|
| 593 |
+
|
| 594 |
+
# Vector information table
|
| 595 |
+
vector_info = pd.DataFrame({
|
| 596 |
+
'Property': ['A_x', 'A_y', 'B_x', 'B_y', '|A|', '|B|'],
|
| 597 |
+
'Value': [f'{a_x:.3f}', f'{a_y:.3f}', f'{b_x:.3f}', f'{b_y:.3f}',
|
| 598 |
+
f'{magnitude_a:.3f}', f'{magnitude_b:.3f}']
|
| 599 |
+
})
|
| 600 |
+
st.dataframe(vector_info, use_container_width=True)
|
| 601 |
+
|
| 602 |
+
# Key results
|
| 603 |
+
col_metric1, col_metric2 = st.columns(2)
|
| 604 |
+
with col_metric1:
|
| 605 |
+
st.metric("Dot Product (A⋅B)", f"{dot_product:.3f}")
|
| 606 |
+
st.metric("Angle", f"{angle_degrees:.2f}°")
|
| 607 |
+
with col_metric2:
|
| 608 |
+
st.metric("Cross Product (2D)", f"{cross_product:.3f}")
|
| 609 |
+
st.metric("cos(θ)", f"{cos_theta:.4f}")
|
| 610 |
+
|
| 611 |
+
# Vector relationship
|
| 612 |
+
if abs(dot_product) < 1e-10:
|
| 613 |
+
st.info("🔄 **Vectors are perpendicular (orthogonal)**")
|
| 614 |
+
elif cos_theta > 0:
|
| 615 |
+
st.info("📐 **Vectors point in similar directions (acute angle)**")
|
| 616 |
+
else:
|
| 617 |
+
st.info("📐 **Vectors point in opposite directions (obtuse angle)**")
|
| 618 |
+
|
| 619 |
+
# Draw vectors
|
| 620 |
+
fig = draw_vectors(a_x, a_y, b_x, b_y, angle_degrees)
|
| 621 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 622 |
+
|
| 623 |
+
# Additional calculations
|
| 624 |
+
st.subheader("🧮 Additional Calculations")
|
| 625 |
+
|
| 626 |
+
# Unit vectors
|
| 627 |
+
unit_a_x = a_x / magnitude_a if magnitude_a != 0 else 0
|
| 628 |
+
unit_a_y = a_y / magnitude_a if magnitude_a != 0 else 0
|
| 629 |
+
unit_b_x = b_x / magnitude_b if magnitude_b != 0 else 0
|
| 630 |
+
unit_b_y = b_y / magnitude_b if magnitude_b != 0 else 0
|
| 631 |
+
|
| 632 |
+
st.write(f"**Unit vector A:** ({unit_a_x:.3f}, {unit_a_y:.3f})")
|
| 633 |
+
st.write(f"**Unit vector B:** ({unit_b_x:.3f}, {unit_b_y:.3f})")
|
| 634 |
+
|
| 635 |
+
# Vector sum and difference
|
| 636 |
+
sum_x, sum_y = a_x + b_x, a_y + b_y
|
| 637 |
+
diff_x, diff_y = a_x - b_x, a_y - b_y
|
| 638 |
+
|
| 639 |
+
st.write(f"**A + B:** ({sum_x:.3f}, {sum_y:.3f})")
|
| 640 |
+
st.write(f"**A - B:** ({diff_x:.3f}, {diff_y:.3f})")
|
| 641 |
+
|
| 642 |
+
def triangle_visualizer():
|
| 643 |
+
st.header("🎨 Interactive Triangle Visualizer")
|
| 644 |
+
st.markdown("Explore how changing triangle properties affects its shape and calculations!")
|
| 645 |
+
|
| 646 |
+
col1, col2 = st.columns([1, 1])
|
| 647 |
+
|
| 648 |
+
with col1:
|
| 649 |
+
st.subheader("🎛️ Triangle Controls")
|
| 650 |
+
|
| 651 |
+
# Interactive sliders for triangle properties
|
| 652 |
+
side_a = st.slider("Side a:", min_value=1.0, max_value=15.0, value=8.0, step=0.1)
|
| 653 |
+
side_b = st.slider("Side b:", min_value=1.0, max_value=15.0, value=6.0, step=0.1)
|
| 654 |
+
angle_C = st.slider("Angle C (degrees):", min_value=10.0, max_value=170.0, value=60.0, step=1.0)
|
| 655 |
+
|
| 656 |
+
# Calculate using Law of Cosines
|
| 657 |
+
side_c = sqrt(side_a**2 + side_b**2 - 2 * side_a * side_b * cos(radians(angle_C)))
|
| 658 |
+
|
| 659 |
+
# Calculate other angles
|
| 660 |
+
try:
|
| 661 |
+
angle_A = degrees(acos((side_b**2 + side_c**2 - side_a**2) / (2 * side_b * side_c)))
|
| 662 |
+
angle_B = 180 - angle_A - angle_C
|
| 663 |
+
except ValueError:
|
| 664 |
+
st.error("Invalid triangle configuration!")
|
| 665 |
+
return
|
| 666 |
+
|
| 667 |
+
# Real-time calculations
|
| 668 |
+
area = 0.5 * side_a * side_b * sin(radians(angle_C))
|
| 669 |
+
perimeter = side_a + side_b + side_c
|
| 670 |
+
|
| 671 |
+
# Display live results
|
| 672 |
+
st.subheader("📊 Live Results")
|
| 673 |
+
col_live1, col_live2 = st.columns(2)
|
| 674 |
+
with col_live1:
|
| 675 |
+
st.metric("Side c", f"{side_c:.2f}")
|
| 676 |
+
st.metric("Angle A", f"{angle_A:.1f}°")
|
| 677 |
+
st.metric("Area", f"{area:.2f}")
|
| 678 |
+
with col_live2:
|
| 679 |
+
st.metric("Angle B", f"{angle_B:.1f}°")
|
| 680 |
+
st.metric("Perimeter", f"{perimeter:.2f}")
|
| 681 |
+
|
| 682 |
+
# Triangle type
|
| 683 |
+
if abs(angle_A - 90) < 0.1 or abs(angle_B - 90) < 0.1 or abs(angle_C - 90) < 0.1:
|
| 684 |
+
triangle_type = "Right"
|
| 685 |
+
elif angle_A > 90 or angle_B > 90 or angle_C > 90:
|
| 686 |
+
triangle_type = "Obtuse"
|
| 687 |
+
else:
|
| 688 |
+
triangle_type = "Acute"
|
| 689 |
+
|
| 690 |
+
st.info(f"**Triangle Type:** {triangle_type}")
|
| 691 |
+
|
| 692 |
+
with col2:
|
| 693 |
+
st.subheader("📐 Interactive Triangle")
|
| 694 |
+
|
| 695 |
+
# Draw the interactive triangle
|
| 696 |
+
fig = draw_triangle(side_a, side_b, side_c, angle_A, angle_B, angle_C, "Interactive Triangle")
|
| 697 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 698 |
+
|
| 699 |
+
# Show which laws apply
|
| 700 |
+
st.subheader("📚 Applicable Laws")
|
| 701 |
+
st.write("**Given:** Two sides (a, b) and included angle (C)")
|
| 702 |
+
st.write("**Use:** Law of Cosines to find side c")
|
| 703 |
+
st.write("**Then:** Law of Cosines or Sines to find remaining angles")
|
| 704 |
+
|
| 705 |
+
# Show the calculations
|
| 706 |
+
with st.expander("🔍 See the calculations"):
|
| 707 |
+
st.write("**Step 1: Find side c using Law of Cosines**")
|
| 708 |
+
st.latex(r"c^2 = a^2 + b^2 - 2ab \cos(C)")
|
| 709 |
+
st.write(f"c² = {side_a}² + {side_b}² - 2({side_a})({side_b})cos({angle_C}°)")
|
| 710 |
+
st.write(f"c² = {side_a**2:.2f} + {side_b**2:.2f} - {2*side_a*side_b:.2f} × {cos(radians(angle_C)):.4f}")
|
| 711 |
+
st.write(f"c = {side_c:.3f}")
|
| 712 |
+
|
| 713 |
+
st.write("**Step 2: Find angle A using Law of Cosines**")
|
| 714 |
+
st.latex(r"\cos(A) = \frac{b^2 + c^2 - a^2}{2bc}")
|
| 715 |
+
st.write(f"cos(A) = ({side_b}² + {side_c:.2f}² - {side_a}²) / (2 × {side_b} × {side_c:.2f})")
|
| 716 |
+
st.write(f"A = {angle_A:.2f}°")
|
| 717 |
+
|
| 718 |
+
st.write("**Step 3: Find angle B**")
|
| 719 |
+
st.write(f"B = 180° - A - C = 180° - {angle_A:.2f}° - {angle_C}° = {angle_B:.2f}°")
|
| 720 |
+
|
| 721 |
+
def main():
|
| 722 |
+
st.set_page_config(page_title="Triangle Solver & Vector Calculator", page_icon="📐", layout="wide")
|
| 723 |
+
|
| 724 |
+
st.title("📐 Triangle Solver & Vector Calculator")
|
| 725 |
+
st.markdown("### Master the Law of Sines, Law of Cosines, and Vector Applications!")
|
| 726 |
+
|
| 727 |
+
# Add educational tips
|
| 728 |
+
tips = [
|
| 729 |
+
"💡 **Law of Sines**: Use when you have angle-side-angle (ASA) or side-angle-angle (SAA)",
|
| 730 |
+
"🎯 **Law of Cosines**: Use when you have side-side-side (SSS) or side-angle-side (SAS)",
|
| 731 |
+
"📊 **Vector Tip**: The angle between vectors uses the dot product formula",
|
| 732 |
+
"🔄 **Remember**: Always check if your triangle is valid (triangle inequality)",
|
| 733 |
+
"⚡ **Practical**: These laws help in navigation, engineering, and physics!"
|
| 734 |
+
]
|
| 735 |
+
|
| 736 |
+
st.info(np.random.choice(tips))
|
| 737 |
+
|
| 738 |
+
# Sidebar for mode selection
|
| 739 |
+
st.sidebar.header("🎛️ Calculator Mode")
|
| 740 |
+
mode = st.sidebar.radio(
|
| 741 |
+
"Choose what to calculate:",
|
| 742 |
+
["Law of Sines", "Law of Cosines", "Vector Angle Calculator", "Triangle Visualizer"]
|
| 743 |
+
)
|
| 744 |
+
|
| 745 |
+
# Educational content sidebar
|
| 746 |
+
with st.sidebar.expander("📚 Quick Reference"):
|
| 747 |
+
st.markdown("""
|
| 748 |
+
**Law of Sines:**
|
| 749 |
+
a/sin(A) = b/sin(B) = c/sin(C)
|
| 750 |
+
|
| 751 |
+
**Law of Cosines:**
|
| 752 |
+
c² = a² + b² - 2ab⋅cos(C)
|
| 753 |
+
|
| 754 |
+
**Vector Angle:**
|
| 755 |
+
cos(θ) = (A⋅B)/(|A||B|)
|
| 756 |
+
|
| 757 |
+
**Triangle Inequality:**
|
| 758 |
+
a + b > c, b + c > a, a + c > b
|
| 759 |
+
""")
|
| 760 |
+
|
| 761 |
+
# Main content based on mode
|
| 762 |
+
if mode == "Law of Sines":
|
| 763 |
+
law_of_sines_calculator()
|
| 764 |
+
elif mode == "Law of Cosines":
|
| 765 |
+
law_of_cosines_calculator()
|
| 766 |
+
elif mode == "Vector Angle Calculator":
|
| 767 |
+
vector_angle_calculator()
|
| 768 |
+
else:
|
| 769 |
+
triangle_visualizer()
|
| 770 |
+
|
| 771 |
+
# Footer with applications
|
| 772 |
+
st.markdown("---")
|
| 773 |
+
st.subheader("🌟 Real-World Applications")
|
| 774 |
+
|
| 775 |
+
app_col1, app_col2, app_col3 = st.columns(3)
|
| 776 |
+
|
| 777 |
+
with app_col1:
|
| 778 |
+
st.markdown("""
|
| 779 |
+
**🏗️ Engineering**
|
| 780 |
+
- Structural analysis
|
| 781 |
+
- Force calculations
|
| 782 |
+
- Bridge design
|
| 783 |
+
""")
|
| 784 |
+
|
| 785 |
+
with app_col2:
|
| 786 |
+
st.markdown("""
|
| 787 |
+
**🧭 Navigation**
|
| 788 |
+
- GPS systems
|
| 789 |
+
- Ship navigation
|
| 790 |
+
- Flight paths
|
| 791 |
+
""")
|
| 792 |
+
|
| 793 |
+
with app_col3:
|
| 794 |
+
st.markdown("""
|
| 795 |
+
**🎮 Technology**
|
| 796 |
+
- Computer graphics
|
| 797 |
+
- Game physics
|
| 798 |
+
- Robotics
|
| 799 |
+
""")
|
| 800 |
|
| 801 |
+
if __name__ == "__main__":
|
| 802 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|