Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +132 -545
src/streamlit_app.py
CHANGED
|
@@ -15,245 +15,29 @@ def main():
|
|
| 15 |
st.title("βοΈ Multi-Criteria Decision Analysis (MCDA) Calculator")
|
| 16 |
st.markdown("Compare products and alternatives using weighted criteria analysis")
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
st.
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
["Manual Entry", "Upload Excel File"]
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
if input_method == "Upload Excel File":
|
| 28 |
-
excel_interface()
|
| 29 |
-
else:
|
| 30 |
-
manual_interface()
|
| 31 |
-
|
| 32 |
-
def excel_interface():
|
| 33 |
-
"""Handle Excel file upload with improved HF Spaces compatibility."""
|
| 34 |
-
st.header("π Excel File Analysis")
|
| 35 |
-
|
| 36 |
-
# Add file upload instructions
|
| 37 |
-
st.info("π‘ Upload an Excel file with 'Config' and 'Data' sheets.")
|
| 38 |
-
|
| 39 |
-
uploaded_file = st.file_uploader(
|
| 40 |
-
"Upload Excel file with Config and Data sheets",
|
| 41 |
-
type=['xlsx', 'xls'],
|
| 42 |
-
help="Excel file should have 'Config' sheet (category, maximize) and 'Data' sheet (name, category values)",
|
| 43 |
-
key="excel_uploader"
|
| 44 |
-
)
|
| 45 |
-
|
| 46 |
-
if uploaded_file is not None:
|
| 47 |
-
st.success(f"β
File uploaded: **{uploaded_file.name}**")
|
| 48 |
-
|
| 49 |
-
# Show file details
|
| 50 |
-
col1, col2, col3 = st.columns(3)
|
| 51 |
-
with col1:
|
| 52 |
-
st.metric("File Size", f"{uploaded_file.size:,} bytes")
|
| 53 |
-
with col2:
|
| 54 |
-
st.metric("File Type", uploaded_file.type)
|
| 55 |
-
with col3:
|
| 56 |
-
process_button = st.button("π Process File", type="primary", use_container_width=True)
|
| 57 |
-
|
| 58 |
-
if process_button:
|
| 59 |
-
with st.spinner("π Processing Excel file..."):
|
| 60 |
-
try:
|
| 61 |
-
# Reset file pointer
|
| 62 |
-
uploaded_file.seek(0)
|
| 63 |
-
|
| 64 |
-
# Try different engines for better compatibility
|
| 65 |
-
try:
|
| 66 |
-
# First try openpyxl (preferred for .xlsx)
|
| 67 |
-
config_df = pd.read_excel(uploaded_file, sheet_name='Config', engine='openpyxl')
|
| 68 |
-
uploaded_file.seek(0) # Reset again
|
| 69 |
-
data_df = pd.read_excel(uploaded_file, sheet_name='Data', engine='openpyxl')
|
| 70 |
-
except Exception as e1:
|
| 71 |
-
st.warning(f"openpyxl failed: {e1}. Trying xlrd...")
|
| 72 |
-
try:
|
| 73 |
-
# Fallback to xlrd (for .xls files)
|
| 74 |
-
uploaded_file.seek(0)
|
| 75 |
-
config_df = pd.read_excel(uploaded_file, sheet_name='Config', engine='xlrd')
|
| 76 |
-
uploaded_file.seek(0)
|
| 77 |
-
data_df = pd.read_excel(uploaded_file, sheet_name='Data', engine='xlrd')
|
| 78 |
-
except Exception as e2:
|
| 79 |
-
st.error(f"Both engines failed. openpyxl: {e1}, xlrd: {e2}")
|
| 80 |
-
# Try without specifying engine
|
| 81 |
-
uploaded_file.seek(0)
|
| 82 |
-
config_df = pd.read_excel(uploaded_file, sheet_name='Config')
|
| 83 |
-
uploaded_file.seek(0)
|
| 84 |
-
data_df = pd.read_excel(uploaded_file, sheet_name='Data')
|
| 85 |
-
|
| 86 |
-
st.success("β
Successfully read Excel sheets")
|
| 87 |
-
|
| 88 |
-
# Validate required columns
|
| 89 |
-
if 'category' not in config_df.columns or 'maximize' not in config_df.columns:
|
| 90 |
-
st.error("β Config sheet must have 'category' and 'maximize' columns")
|
| 91 |
-
return
|
| 92 |
-
|
| 93 |
-
if 'name' not in data_df.columns:
|
| 94 |
-
st.error("β Data sheet must have 'name' column")
|
| 95 |
-
return
|
| 96 |
-
|
| 97 |
-
# Show preview of what we read
|
| 98 |
-
with st.expander("π File Contents Preview", expanded=True):
|
| 99 |
-
col1, col2 = st.columns(2)
|
| 100 |
-
with col1:
|
| 101 |
-
st.write("**Config Sheet:**")
|
| 102 |
-
st.dataframe(config_df, use_container_width=True)
|
| 103 |
-
with col2:
|
| 104 |
-
st.write("**Data Sheet:**")
|
| 105 |
-
st.dataframe(data_df.head(), use_container_width=True)
|
| 106 |
-
|
| 107 |
-
# Parse categories and maximize settings
|
| 108 |
-
categories = config_df['category'].tolist()
|
| 109 |
-
maximize_values = config_df['maximize'].tolist()
|
| 110 |
-
maximize = dict(zip(categories, maximize_values))
|
| 111 |
-
|
| 112 |
-
# Validate that all categories exist in data
|
| 113 |
-
missing_categories = [cat for cat in categories if cat not in data_df.columns]
|
| 114 |
-
if missing_categories:
|
| 115 |
-
st.error(f"β Missing categories in Data sheet: {missing_categories}")
|
| 116 |
-
return
|
| 117 |
-
|
| 118 |
-
# Create calculator
|
| 119 |
-
calc = UtilityCalculator(categories, maximize)
|
| 120 |
-
|
| 121 |
-
# Add products from data
|
| 122 |
-
for _, row in data_df.iterrows():
|
| 123 |
-
product_name = row['name']
|
| 124 |
-
scores = {cat: row[cat] for cat in categories if cat in row and pd.notna(row[cat])}
|
| 125 |
-
|
| 126 |
-
# Check for missing values
|
| 127 |
-
if len(scores) != len(categories):
|
| 128 |
-
missing = [cat for cat in categories if cat not in scores]
|
| 129 |
-
st.warning(f"β οΈ Product '{product_name}' missing values for: {missing}")
|
| 130 |
-
|
| 131 |
-
calc.add_product(product_name, scores)
|
| 132 |
-
|
| 133 |
-
st.success(f"β
Successfully created calculator with {len(calc.products)} products and {len(calc.categories)} categories")
|
| 134 |
-
|
| 135 |
-
# Store in session state
|
| 136 |
-
st.session_state['excel_calculator'] = calc
|
| 137 |
-
st.session_state['excel_filename'] = uploaded_file.name
|
| 138 |
-
|
| 139 |
-
# Display configuration
|
| 140 |
-
st.subheader("π Configuration")
|
| 141 |
-
config_display_df = pd.DataFrame({
|
| 142 |
-
'Category': calc.categories,
|
| 143 |
-
'Optimize': ['Maximize' if calc.maximize[cat] else 'Minimize' for cat in calc.categories],
|
| 144 |
-
'Weight': [calc.weights[cat] for cat in calc.categories]
|
| 145 |
-
})
|
| 146 |
-
st.dataframe(config_display_df, use_container_width=True)
|
| 147 |
-
|
| 148 |
-
# Weight adjustment
|
| 149 |
-
adjust_weights(calc)
|
| 150 |
-
|
| 151 |
-
# Results
|
| 152 |
-
display_results(calc)
|
| 153 |
-
|
| 154 |
-
except Exception as e:
|
| 155 |
-
st.error(f"β Error processing Excel file: {str(e)}")
|
| 156 |
-
|
| 157 |
-
# Enhanced debugging
|
| 158 |
-
with st.expander("π Detailed Error Information"):
|
| 159 |
-
st.write("**Error Details:**")
|
| 160 |
-
st.write(f"- Error type: {type(e).__name__}")
|
| 161 |
-
st.write(f"- Error message: {str(e)}")
|
| 162 |
-
|
| 163 |
-
# Try to diagnose the issue
|
| 164 |
-
try:
|
| 165 |
-
uploaded_file.seek(0)
|
| 166 |
-
# Check available pandas Excel engines
|
| 167 |
-
st.write("**Available pandas engines:**")
|
| 168 |
-
try:
|
| 169 |
-
import openpyxl
|
| 170 |
-
st.write("β
openpyxl available")
|
| 171 |
-
except ImportError:
|
| 172 |
-
st.write("β openpyxl not available")
|
| 173 |
-
|
| 174 |
-
# Try to read sheet names
|
| 175 |
-
excel_file = pd.ExcelFile(uploaded_file)
|
| 176 |
-
st.write(f"- Available sheets: {excel_file.sheet_names}")
|
| 177 |
-
|
| 178 |
-
# Check if required sheets exist
|
| 179 |
-
if 'Config' not in excel_file.sheet_names:
|
| 180 |
-
st.error("β 'Config' sheet not found")
|
| 181 |
-
if 'Data' not in excel_file.sheet_names:
|
| 182 |
-
st.error("β 'Data' sheet not found")
|
| 183 |
-
|
| 184 |
-
except Exception as diag_error:
|
| 185 |
-
st.write(f"- Could not diagnose: {diag_error}")
|
| 186 |
-
|
| 187 |
-
import traceback
|
| 188 |
-
st.code(traceback.format_exc())
|
| 189 |
-
|
| 190 |
-
# Display results if calculator is in session state (from previous processing)
|
| 191 |
-
elif 'excel_calculator' in st.session_state:
|
| 192 |
-
calc = st.session_state['excel_calculator']
|
| 193 |
-
filename = st.session_state.get('excel_filename', 'Previous file')
|
| 194 |
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
if 'excel_filename' in st.session_state:
|
| 201 |
-
del st.session_state['excel_filename']
|
| 202 |
-
st.rerun()
|
| 203 |
-
|
| 204 |
-
# Display configuration
|
| 205 |
-
st.subheader("π Configuration")
|
| 206 |
-
config_df = pd.DataFrame({
|
| 207 |
-
'Category': calc.categories,
|
| 208 |
-
'Optimize': ['Maximize' if calc.maximize[cat] else 'Minimize' for cat in calc.categories],
|
| 209 |
-
'Weight': [calc.weights[cat] for cat in calc.categories]
|
| 210 |
-
})
|
| 211 |
-
st.dataframe(config_df, use_container_width=True)
|
| 212 |
-
|
| 213 |
-
# Weight adjustment
|
| 214 |
-
adjust_weights(calc)
|
| 215 |
-
|
| 216 |
-
# Results
|
| 217 |
-
display_results(calc)
|
| 218 |
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
# Add sample download option
|
| 223 |
-
if st.button("π₯ Download Sample Excel Template"):
|
| 224 |
-
# Create sample data
|
| 225 |
-
sample_config = pd.DataFrame({
|
| 226 |
-
'category': ['Performance', 'Cost', 'Quality', 'Reliability'],
|
| 227 |
-
'maximize': [True, False, True, True]
|
| 228 |
-
})
|
| 229 |
-
|
| 230 |
-
sample_data = pd.DataFrame({
|
| 231 |
-
'name': ['Product_A', 'Product_B', 'Product_C', 'Product_D'],
|
| 232 |
-
'Performance': [85, 70, 90, 75],
|
| 233 |
-
'Cost': [120, 100, 140, 110],
|
| 234 |
-
'Quality': [90, 85, 95, 80],
|
| 235 |
-
'Reliability': [88, 92, 85, 90]
|
| 236 |
-
})
|
| 237 |
-
|
| 238 |
-
# Create Excel file in memory
|
| 239 |
-
import io
|
| 240 |
-
excel_buffer = io.BytesIO()
|
| 241 |
-
with pd.ExcelWriter(excel_buffer, engine='openpyxl') as writer:
|
| 242 |
-
sample_config.to_excel(writer, sheet_name='Config', index=False)
|
| 243 |
-
sample_data.to_excel(writer, sheet_name='Data', index=False)
|
| 244 |
-
|
| 245 |
-
excel_buffer.seek(0)
|
| 246 |
-
|
| 247 |
-
st.download_button(
|
| 248 |
-
label="π Download Sample.xlsx",
|
| 249 |
-
data=excel_buffer.getvalue(),
|
| 250 |
-
file_name="MCDA_Sample_Template.xlsx",
|
| 251 |
-
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
|
| 252 |
-
)
|
| 253 |
|
| 254 |
def manual_interface():
|
| 255 |
"""Handle manual data entry interface."""
|
| 256 |
-
st.header("βοΈ
|
| 257 |
|
| 258 |
# Step 1: Define categories
|
| 259 |
st.subheader("1. Define Categories")
|
|
@@ -265,7 +49,7 @@ def manual_interface():
|
|
| 265 |
"Enter categories (one per line):",
|
| 266 |
value="Performance\nCost\nReliability",
|
| 267 |
height=100,
|
| 268 |
-
help="Enter each category on a new line"
|
| 269 |
)
|
| 270 |
categories = [cat.strip() for cat in categories_input.split('\n') if cat.strip()]
|
| 271 |
|
|
@@ -341,33 +125,33 @@ def data_entry_interface(categories):
|
|
| 341 |
if 'products' not in st.session_state:
|
| 342 |
st.session_state.products = []
|
| 343 |
|
| 344 |
-
#
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
submitted = st.form_submit_button("Add
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
|
| 372 |
# Display current products with edit/delete options
|
| 373 |
if st.session_state.products:
|
|
@@ -381,124 +165,105 @@ def data_entry_interface(categories):
|
|
| 381 |
edited_df = st.data_editor(
|
| 382 |
df,
|
| 383 |
use_container_width=True,
|
| 384 |
-
num_rows="dynamic",
|
| 385 |
-
key="products_editor"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
)
|
| 387 |
|
| 388 |
# Update session state with edited data
|
| 389 |
st.session_state.products = edited_df.to_dict('records')
|
| 390 |
|
| 391 |
-
#
|
| 392 |
-
st.
|
| 393 |
-
|
| 394 |
-
col1, col2, col3 = st.columns([2, 1, 1])
|
| 395 |
|
| 396 |
with col1:
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
selected_product = st.selectbox(
|
| 401 |
-
"Select product to manage:",
|
| 402 |
-
options=product_names,
|
| 403 |
-
key="product_selector"
|
| 404 |
-
)
|
| 405 |
-
|
| 406 |
-
with col2:
|
| 407 |
-
# Edit button
|
| 408 |
-
if st.button("βοΈ Edit Selected", key="edit_button"):
|
| 409 |
-
if 'edit_mode' not in st.session_state:
|
| 410 |
st.session_state.edit_mode = {}
|
| 411 |
-
st.
|
| 412 |
st.rerun()
|
| 413 |
|
| 414 |
-
with
|
| 415 |
-
#
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
st.write(f"**Editing: {selected_product}**")
|
| 426 |
-
|
| 427 |
-
# Find the product to edit
|
| 428 |
-
product_to_edit = next(p for p in st.session_state.products if p['name'] == selected_product)
|
| 429 |
-
|
| 430 |
-
with st.form(f"edit_product_{selected_product}"):
|
| 431 |
-
col1, col2 = st.columns([1, 2])
|
| 432 |
-
|
| 433 |
-
with col1:
|
| 434 |
-
new_name = st.text_input("Product Name", value=selected_product)
|
| 435 |
-
|
| 436 |
-
with col2:
|
| 437 |
-
new_scores = {}
|
| 438 |
-
cols = st.columns(len(categories))
|
| 439 |
-
for i, cat in enumerate(categories):
|
| 440 |
-
with cols[i]:
|
| 441 |
-
current_value = product_to_edit.get(cat, 0.0)
|
| 442 |
-
new_scores[cat] = st.number_input(
|
| 443 |
-
f"{cat}",
|
| 444 |
-
value=float(current_value),
|
| 445 |
-
step=1.0,
|
| 446 |
-
key=f"edit_{cat}_{selected_product}"
|
| 447 |
-
)
|
| 448 |
-
|
| 449 |
-
col_save, col_cancel = st.columns(2)
|
| 450 |
-
|
| 451 |
-
with col_save:
|
| 452 |
-
save_changes = st.form_submit_button("πΎ Save Changes", type="primary")
|
| 453 |
-
|
| 454 |
-
with col_cancel:
|
| 455 |
-
cancel_edit = st.form_submit_button("β Cancel")
|
| 456 |
-
|
| 457 |
-
if save_changes:
|
| 458 |
-
# Update the product
|
| 459 |
-
for i, product in enumerate(st.session_state.products):
|
| 460 |
-
if product['name'] == selected_product:
|
| 461 |
-
st.session_state.products[i] = {'name': new_name, **new_scores}
|
| 462 |
-
break
|
| 463 |
-
|
| 464 |
-
# Clear edit mode
|
| 465 |
-
st.session_state.edit_mode[selected_product] = False
|
| 466 |
-
st.success(f"β
Updated product: {new_name}")
|
| 467 |
-
st.rerun()
|
| 468 |
-
|
| 469 |
-
if cancel_edit:
|
| 470 |
-
# Clear edit mode
|
| 471 |
-
st.session_state.edit_mode[selected_product] = False
|
| 472 |
-
st.rerun()
|
| 473 |
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
st.
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
with col1:
|
| 480 |
-
if st.button("ποΈ Clear All Products", type="secondary"):
|
| 481 |
-
st.session_state.products = []
|
| 482 |
-
if 'edit_mode' in st.session_state:
|
| 483 |
-
st.session_state.edit_mode = {}
|
| 484 |
-
st.success("β
Cleared all products")
|
| 485 |
-
st.rerun()
|
| 486 |
-
|
| 487 |
-
with col2:
|
| 488 |
-
# Export current products to JSON for backup
|
| 489 |
-
import json
|
| 490 |
-
products_json = json.dumps(st.session_state.products, indent=2)
|
| 491 |
st.download_button(
|
| 492 |
-
label="
|
| 493 |
-
data=
|
| 494 |
-
file_name="
|
| 495 |
-
mime="application/
|
|
|
|
| 496 |
)
|
| 497 |
|
| 498 |
return st.session_state.products
|
|
|
|
|
|
|
| 499 |
|
| 500 |
return []
|
| 501 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
def adjust_weights(calc):
|
| 503 |
"""Create weight adjustment interface."""
|
| 504 |
st.subheader("3. Adjust Category Weights")
|
|
@@ -535,116 +300,9 @@ def adjust_weights(calc):
|
|
| 535 |
})
|
| 536 |
st.dataframe(weight_df, use_container_width=True)
|
| 537 |
|
| 538 |
-
# Add aggregation method selection
|
| 539 |
-
st.write("**Aggregation Method:**")
|
| 540 |
-
aggregation_method = st.radio(
|
| 541 |
-
"Choose how to combine category scores:",
|
| 542 |
-
options=['weighted_sum', 'geometric_mean', 'threshold_penalty'],
|
| 543 |
-
format_func=lambda x: {
|
| 544 |
-
'weighted_sum': 'Weighted Sum (No Penalty)',
|
| 545 |
-
'geometric_mean': 'Geometric Mean (Penalty for Poor Performance)',
|
| 546 |
-
'threshold_penalty': 'Threshold/Objective Penalty System'
|
| 547 |
-
}[x],
|
| 548 |
-
help="Weighted Sum: Full compensation between criteria. Geometric Mean: Penalizes poor performance. Threshold/Objective: Three-zone penalty system with elimination below thresholds."
|
| 549 |
-
)
|
| 550 |
-
|
| 551 |
-
# Update calculator's aggregation method
|
| 552 |
-
calc.set_aggregation_method(aggregation_method)
|
| 553 |
-
|
| 554 |
-
# Add threshold/objective configuration for penalty system
|
| 555 |
-
if aggregation_method == 'threshold_penalty':
|
| 556 |
-
st.write("**Configure Thresholds and Objectives:**")
|
| 557 |
-
st.info("π Set minimum acceptable values (thresholds) and target values (objectives) for each category.")
|
| 558 |
-
|
| 559 |
-
col1, col2 = st.columns(2)
|
| 560 |
-
|
| 561 |
-
with col1:
|
| 562 |
-
st.write("**Thresholds (Minimum Acceptable):**")
|
| 563 |
-
thresholds = {}
|
| 564 |
-
for cat in calc.categories:
|
| 565 |
-
direction = "maximize" if calc.maximize[cat] else "minimize"
|
| 566 |
-
thresholds[cat] = st.number_input(
|
| 567 |
-
f"{cat.title()} threshold",
|
| 568 |
-
value=50.0,
|
| 569 |
-
step=1.0,
|
| 570 |
-
help=f"Minimum acceptable value for {cat} ({direction}). Below this = elimination."
|
| 571 |
-
)
|
| 572 |
-
|
| 573 |
-
with col2:
|
| 574 |
-
st.write("**Objectives (Target Values):**")
|
| 575 |
-
objectives = {}
|
| 576 |
-
for cat in calc.categories:
|
| 577 |
-
direction = "maximize" if calc.maximize[cat] else "minimize"
|
| 578 |
-
objectives[cat] = st.number_input(
|
| 579 |
-
f"{cat.title()} objective",
|
| 580 |
-
value=80.0,
|
| 581 |
-
step=1.0,
|
| 582 |
-
help=f"Target value for {cat} ({direction}). At/above this = full score."
|
| 583 |
-
)
|
| 584 |
-
|
| 585 |
-
# Validate and apply threshold/objective configuration
|
| 586 |
-
try:
|
| 587 |
-
calc.set_thresholds(thresholds)
|
| 588 |
-
calc.set_objectives(objectives)
|
| 589 |
-
|
| 590 |
-
# Validate configuration
|
| 591 |
-
validation_errors = calc.validate_penalty_configuration()
|
| 592 |
-
if validation_errors:
|
| 593 |
-
st.error("β Configuration Issues:")
|
| 594 |
-
for error in validation_errors:
|
| 595 |
-
st.error(f"β’ {error}")
|
| 596 |
-
else:
|
| 597 |
-
st.success("β
Threshold/Objective configuration is valid")
|
| 598 |
-
|
| 599 |
-
# Show penalty zones explanation
|
| 600 |
-
with st.expander("π How the Penalty System Works"):
|
| 601 |
-
st.write("""
|
| 602 |
-
**Three-Zone System for each category:**
|
| 603 |
-
|
| 604 |
-
π΄ **Zone 1 - Elimination**: Below threshold β Score = 0
|
| 605 |
-
- Products failing to meet minimum requirements are heavily penalized
|
| 606 |
-
|
| 607 |
-
π‘ **Zone 2 - Penalty**: Between threshold and objective β Linear scale (0-50)
|
| 608 |
-
- Graduated penalty that decreases as you approach the objective
|
| 609 |
-
|
| 610 |
-
π’ **Zone 3 - Full Reward**: At/above objective β Full normalized score (50-100)
|
| 611 |
-
- Products meeting targets compete on standard normalization
|
| 612 |
-
|
| 613 |
-
**Example**: Reliability (maximize, threshold=80, objective=95)
|
| 614 |
-
- Score 70: Gets 0 (below threshold)
|
| 615 |
-
- Score 87: Gets ~23 (between threshold/objective)
|
| 616 |
-
- Score 98: Gets ~90 (above objective, normalized against other qualified products)
|
| 617 |
-
""")
|
| 618 |
-
|
| 619 |
-
except Exception as e:
|
| 620 |
-
st.error(f"β Error configuring penalty system: {str(e)}")
|
| 621 |
-
|
| 622 |
-
# Update calculator's aggregation method
|
| 623 |
-
calc.set_aggregation_method(aggregation_method)
|
| 624 |
-
|
| 625 |
def display_results(calc):
|
| 626 |
"""Display analysis results."""
|
| 627 |
st.subheader("π Results")
|
| 628 |
-
|
| 629 |
-
# Display current aggregation method
|
| 630 |
-
method_names = {
|
| 631 |
-
'weighted_sum': 'Weighted Sum (No Penalty)',
|
| 632 |
-
'geometric_mean': 'Geometric Mean (Penalty for Poor Performance)',
|
| 633 |
-
'threshold_penalty': 'Threshold/Objective Penalty System'
|
| 634 |
-
}
|
| 635 |
-
method_name = method_names.get(calc.aggregation_method, calc.aggregation_method)
|
| 636 |
-
st.info(f"π§ Using: **{method_name}**")
|
| 637 |
-
|
| 638 |
-
# Show penalty configuration if threshold penalty is active
|
| 639 |
-
if calc.aggregation_method == 'threshold_penalty' and calc.use_penalties:
|
| 640 |
-
with st.expander("π― Current Threshold/Objective Settings"):
|
| 641 |
-
penalty_config = pd.DataFrame({
|
| 642 |
-
'Category': calc.categories,
|
| 643 |
-
'Direction': ['Maximize' if calc.maximize[cat] else 'Minimize' for cat in calc.categories],
|
| 644 |
-
'Threshold': [calc.thresholds[cat] for cat in calc.categories],
|
| 645 |
-
'Objective': [calc.objectives[cat] for cat in calc.categories]
|
| 646 |
-
})
|
| 647 |
-
st.dataframe(penalty_config, use_container_width=True)
|
| 648 |
|
| 649 |
# Get results
|
| 650 |
rankings = calc.rank_products()
|
|
@@ -656,10 +314,10 @@ def display_results(calc):
|
|
| 656 |
with tab1:
|
| 657 |
st.write("**Product Rankings:**")
|
| 658 |
|
| 659 |
-
#
|
| 660 |
num_products = len(rankings)
|
| 661 |
medals = ["π₯", "π₯", "π₯"] + [""] * max(0, num_products - 3)
|
| 662 |
-
medals = medals[:num_products]
|
| 663 |
|
| 664 |
ranking_df = pd.DataFrame({
|
| 665 |
'Rank': range(1, num_products + 1),
|
|
@@ -703,7 +361,7 @@ def display_results(calc):
|
|
| 703 |
fig_radar = go.Figure()
|
| 704 |
|
| 705 |
normalized = calc.normalize_scores()
|
| 706 |
-
for product in top_products[:3]:
|
| 707 |
values = [normalized[product][cat] for cat in calc.categories]
|
| 708 |
fig_radar.add_trace(go.Scatterpolar(
|
| 709 |
r=values,
|
|
@@ -721,81 +379,10 @@ def display_results(calc):
|
|
| 721 |
showlegend=True,
|
| 722 |
title="Normalized Scores by Category"
|
| 723 |
)
|
| 724 |
-
|
| 725 |
-
# Penalty zone visualization for threshold_penalty method
|
| 726 |
-
if calc.aggregation_method == 'threshold_penalty' and calc.use_penalties:
|
| 727 |
-
st.write("**Penalty Zone Analysis:**")
|
| 728 |
-
|
| 729 |
-
# Create penalty zone visualization
|
| 730 |
-
penalty_fig = go.Figure()
|
| 731 |
-
|
| 732 |
-
for i, cat in enumerate(calc.categories):
|
| 733 |
-
threshold = calc.thresholds[cat]
|
| 734 |
-
objective = calc.objectives[cat]
|
| 735 |
-
|
| 736 |
-
# Get all product scores for this category
|
| 737 |
-
product_scores = [(name, calc.products[name][cat]) for name in calc.products]
|
| 738 |
-
product_scores.sort(key=lambda x: x[1])
|
| 739 |
-
|
| 740 |
-
# Create traces for penalty zones
|
| 741 |
-
y_pos = [i] * len(product_scores)
|
| 742 |
-
scores = [score for _, score in product_scores]
|
| 743 |
-
names = [name for name, _ in product_scores]
|
| 744 |
-
|
| 745 |
-
# Zone colors based on scores
|
| 746 |
-
colors = []
|
| 747 |
-
for _, score in product_scores:
|
| 748 |
-
if calc.maximize[cat]:
|
| 749 |
-
if score < threshold:
|
| 750 |
-
colors.append('red') # Below threshold
|
| 751 |
-
elif score < objective:
|
| 752 |
-
colors.append('orange') # Between threshold and objective
|
| 753 |
-
else:
|
| 754 |
-
colors.append('green') # Above objective
|
| 755 |
-
else:
|
| 756 |
-
if score > threshold:
|
| 757 |
-
colors.append('red') # Above threshold (bad for minimize)
|
| 758 |
-
elif score > objective:
|
| 759 |
-
colors.append('orange') # Between objective and threshold
|
| 760 |
-
else:
|
| 761 |
-
colors.append('green') # Below objective (good for minimize)
|
| 762 |
-
|
| 763 |
-
# Add scatter points for products
|
| 764 |
-
penalty_fig.add_trace(go.Scatter(
|
| 765 |
-
x=scores,
|
| 766 |
-
y=y_pos,
|
| 767 |
-
mode='markers',
|
| 768 |
-
marker=dict(size=12, color=colors),
|
| 769 |
-
text=names,
|
| 770 |
-
name=f'{cat} scores',
|
| 771 |
-
showlegend=False
|
| 772 |
-
))
|
| 773 |
-
|
| 774 |
-
# Add threshold and objective lines
|
| 775 |
-
penalty_fig.add_vline(x=threshold, line=dict(color='red', dash='dash'),
|
| 776 |
-
annotation_text=f'{cat} threshold')
|
| 777 |
-
penalty_fig.add_vline(x=objective, line=dict(color='green', dash='dash'),
|
| 778 |
-
annotation_text=f'{cat} objective')
|
| 779 |
-
|
| 780 |
-
penalty_fig.update_layout(
|
| 781 |
-
title="Product Scores vs Thresholds/Objectives",
|
| 782 |
-
xaxis_title="Score Value",
|
| 783 |
-
yaxis=dict(
|
| 784 |
-
tickmode='array',
|
| 785 |
-
tickvals=list(range(len(calc.categories))),
|
| 786 |
-
ticktext=calc.categories
|
| 787 |
-
),
|
| 788 |
-
height=max(300, len(calc.categories) * 60)
|
| 789 |
-
)
|
| 790 |
-
|
| 791 |
-
# Legend explanation
|
| 792 |
-
st.write("π΄ Red: Below threshold (eliminated) | π Orange: Between threshold/objective (penalized) | π’ Green: Above objective (full score)")
|
| 793 |
-
|
| 794 |
-
# MOVE THIS LINE INSIDE THE CONDITIONAL BLOCK
|
| 795 |
-
st.plotly_chart(penalty_fig, use_container_width=True)
|
| 796 |
-
|
| 797 |
-
# ADD THIS LINE FOR THE RADAR CHART (outside the penalty block)
|
| 798 |
st.plotly_chart(fig_radar, use_container_width=True)
|
|
|
|
|
|
|
| 799 |
|
| 800 |
if __name__ == "__main__":
|
| 801 |
main()
|
|
|
|
| 15 |
st.title("βοΈ Multi-Criteria Decision Analysis (MCDA) Calculator")
|
| 16 |
st.markdown("Compare products and alternatives using weighted criteria analysis")
|
| 17 |
|
| 18 |
+
# Add info about Excel functionality
|
| 19 |
+
with st.expander("π About This Tool"):
|
| 20 |
+
st.write("""
|
| 21 |
+
**What is MCDA?**
|
| 22 |
+
Multi-Criteria Decision Analysis helps you make objective decisions when comparing
|
| 23 |
+
products, services, or alternatives across multiple criteria.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
**How to use:**
|
| 26 |
+
1. Define your evaluation categories (Performance, Cost, Quality, etc.)
|
| 27 |
+
2. Add the products/options you want to compare
|
| 28 |
+
3. Adjust category weights based on importance
|
| 29 |
+
4. View rankings and detailed analysis
|
| 30 |
|
| 31 |
+
**Need Excel functionality?**
|
| 32 |
+
Download our companion Excel template generator for offline analysis!
|
| 33 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
# Manual interface only for HF Spaces
|
| 36 |
+
manual_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
def manual_interface():
|
| 39 |
"""Handle manual data entry interface."""
|
| 40 |
+
st.header("βοΈ Interactive Data Entry")
|
| 41 |
|
| 42 |
# Step 1: Define categories
|
| 43 |
st.subheader("1. Define Categories")
|
|
|
|
| 49 |
"Enter categories (one per line):",
|
| 50 |
value="Performance\nCost\nReliability",
|
| 51 |
height=100,
|
| 52 |
+
help="Enter each category on a new line. Examples: Performance, Cost, Quality, Ease_of_Use"
|
| 53 |
)
|
| 54 |
categories = [cat.strip() for cat in categories_input.split('\n') if cat.strip()]
|
| 55 |
|
|
|
|
| 125 |
if 'products' not in st.session_state:
|
| 126 |
st.session_state.products = []
|
| 127 |
|
| 128 |
+
# Quick add section
|
| 129 |
+
st.write("**Quick Add Products:**")
|
| 130 |
+
with st.form("quick_add_product", clear_on_submit=True):
|
| 131 |
+
cols = st.columns([2] + [1] * len(categories) + [1])
|
| 132 |
+
|
| 133 |
+
with cols[0]:
|
| 134 |
+
product_name = st.text_input("Product Name", placeholder="e.g., Product A")
|
| 135 |
+
|
| 136 |
+
scores = {}
|
| 137 |
+
for i, cat in enumerate(categories, 1):
|
| 138 |
+
with cols[i]:
|
| 139 |
+
scores[cat] = st.number_input(f"{cat}", value=0.0, step=1.0, key=f"quick_{cat}")
|
| 140 |
+
|
| 141 |
+
with cols[-1]:
|
| 142 |
+
st.write(" ") # Spacer
|
| 143 |
+
submitted = st.form_submit_button("β Add", type="primary")
|
| 144 |
+
|
| 145 |
+
if submitted and product_name:
|
| 146 |
+
# Check if product name already exists
|
| 147 |
+
existing_names = [p['name'] for p in st.session_state.products]
|
| 148 |
+
if product_name in existing_names:
|
| 149 |
+
st.error(f"β Product '{product_name}' already exists. Please use a different name.")
|
| 150 |
+
else:
|
| 151 |
+
new_product = {'name': product_name, **scores}
|
| 152 |
+
st.session_state.products.append(new_product)
|
| 153 |
+
st.success(f"β
Added {product_name}")
|
| 154 |
+
st.rerun()
|
| 155 |
|
| 156 |
# Display current products with edit/delete options
|
| 157 |
if st.session_state.products:
|
|
|
|
| 165 |
edited_df = st.data_editor(
|
| 166 |
df,
|
| 167 |
use_container_width=True,
|
| 168 |
+
num_rows="dynamic",
|
| 169 |
+
key="products_editor",
|
| 170 |
+
column_config={
|
| 171 |
+
"name": st.column_config.TextColumn("Product Name", help="Name of the product/option"),
|
| 172 |
+
**{cat: st.column_config.NumberColumn(cat, help=f"Score for {cat}") for cat in categories}
|
| 173 |
+
}
|
| 174 |
)
|
| 175 |
|
| 176 |
# Update session state with edited data
|
| 177 |
st.session_state.products = edited_df.to_dict('records')
|
| 178 |
|
| 179 |
+
# Bulk operations
|
| 180 |
+
col1, col2, col3 = st.columns(3)
|
|
|
|
|
|
|
| 181 |
|
| 182 |
with col1:
|
| 183 |
+
if st.button("ποΈ Clear All Products", type="secondary"):
|
| 184 |
+
st.session_state.products = []
|
| 185 |
+
if 'edit_mode' in st.session_state:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
st.session_state.edit_mode = {}
|
| 187 |
+
st.success("β
Cleared all products")
|
| 188 |
st.rerun()
|
| 189 |
|
| 190 |
+
with col2:
|
| 191 |
+
# Export current products to JSON for backup
|
| 192 |
+
import json
|
| 193 |
+
products_json = json.dumps(st.session_state.products, indent=2)
|
| 194 |
+
st.download_button(
|
| 195 |
+
label="π₯ Export Data (JSON)",
|
| 196 |
+
data=products_json,
|
| 197 |
+
file_name="mcda_data_backup.json",
|
| 198 |
+
mime="application/json",
|
| 199 |
+
help="Download your data for backup or sharing"
|
| 200 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
with col3:
|
| 203 |
+
# Generate Excel template based on current setup
|
| 204 |
+
if st.button("π Generate Excel Template"):
|
| 205 |
+
excel_buffer = create_excel_template(categories, st.session_state.products)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
st.download_button(
|
| 207 |
+
label="π Download Excel Template",
|
| 208 |
+
data=excel_buffer,
|
| 209 |
+
file_name=f"MCDA_Template_{len(categories)}categories.xlsx",
|
| 210 |
+
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
|
| 211 |
+
help="Download Excel file with your current setup"
|
| 212 |
)
|
| 213 |
|
| 214 |
return st.session_state.products
|
| 215 |
+
else:
|
| 216 |
+
st.info("π Add your first product above to get started")
|
| 217 |
|
| 218 |
return []
|
| 219 |
|
| 220 |
+
def create_excel_template(categories, products_data):
|
| 221 |
+
"""Create Excel template with current data."""
|
| 222 |
+
import io
|
| 223 |
+
|
| 224 |
+
# Create Config sheet
|
| 225 |
+
config_df = pd.DataFrame({
|
| 226 |
+
'category': categories,
|
| 227 |
+
'maximize': [True if cat.lower() != 'cost' else False for cat in categories]
|
| 228 |
+
})
|
| 229 |
+
|
| 230 |
+
# Create Data sheet with current products or templates
|
| 231 |
+
if products_data:
|
| 232 |
+
data_df = pd.DataFrame(products_data)
|
| 233 |
+
else:
|
| 234 |
+
# Create template with placeholder data
|
| 235 |
+
template_data = []
|
| 236 |
+
for i in range(3):
|
| 237 |
+
row = {'name': f'Product_{chr(65+i)}'}
|
| 238 |
+
for cat in categories:
|
| 239 |
+
row[cat] = 0.0
|
| 240 |
+
template_data.append(row)
|
| 241 |
+
data_df = pd.DataFrame(template_data)
|
| 242 |
+
|
| 243 |
+
# Create Excel file in memory
|
| 244 |
+
excel_buffer = io.BytesIO()
|
| 245 |
+
with pd.ExcelWriter(excel_buffer, engine='openpyxl') as writer:
|
| 246 |
+
config_df.to_excel(writer, sheet_name='Config', index=False)
|
| 247 |
+
data_df.to_excel(writer, sheet_name='Data', index=False)
|
| 248 |
+
|
| 249 |
+
# Add instructions sheet
|
| 250 |
+
instructions = pd.DataFrame([
|
| 251 |
+
["MCDA Excel Template", ""],
|
| 252 |
+
["", ""],
|
| 253 |
+
["Config Sheet:", "Defines categories and optimization direction"],
|
| 254 |
+
["Data Sheet:", "Contains your product data"],
|
| 255 |
+
["", ""],
|
| 256 |
+
["To use:", ""],
|
| 257 |
+
["1. Modify data in Data sheet", ""],
|
| 258 |
+
["2. Adjust Config sheet if needed", ""],
|
| 259 |
+
["3. Use with desktop MCDA tools", ""],
|
| 260 |
+
], columns=['Item', 'Description'])
|
| 261 |
+
instructions.to_excel(writer, sheet_name='Instructions', index=False)
|
| 262 |
+
|
| 263 |
+
excel_buffer.seek(0)
|
| 264 |
+
return excel_buffer.getvalue()
|
| 265 |
+
|
| 266 |
+
# Include all your existing functions: adjust_weights, display_results, etc.
|
| 267 |
def adjust_weights(calc):
|
| 268 |
"""Create weight adjustment interface."""
|
| 269 |
st.subheader("3. Adjust Category Weights")
|
|
|
|
| 300 |
})
|
| 301 |
st.dataframe(weight_df, use_container_width=True)
|
| 302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
def display_results(calc):
|
| 304 |
"""Display analysis results."""
|
| 305 |
st.subheader("π Results")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
# Get results
|
| 308 |
rankings = calc.rank_products()
|
|
|
|
| 314 |
with tab1:
|
| 315 |
st.write("**Product Rankings:**")
|
| 316 |
|
| 317 |
+
# Create medals list with correct length
|
| 318 |
num_products = len(rankings)
|
| 319 |
medals = ["π₯", "π₯", "π₯"] + [""] * max(0, num_products - 3)
|
| 320 |
+
medals = medals[:num_products]
|
| 321 |
|
| 322 |
ranking_df = pd.DataFrame({
|
| 323 |
'Rank': range(1, num_products + 1),
|
|
|
|
| 361 |
fig_radar = go.Figure()
|
| 362 |
|
| 363 |
normalized = calc.normalize_scores()
|
| 364 |
+
for product in top_products[:3]:
|
| 365 |
values = [normalized[product][cat] for cat in calc.categories]
|
| 366 |
fig_radar.add_trace(go.Scatterpolar(
|
| 367 |
r=values,
|
|
|
|
| 379 |
showlegend=True,
|
| 380 |
title="Normalized Scores by Category"
|
| 381 |
)
|
| 382 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
st.plotly_chart(fig_radar, use_container_width=True)
|
| 384 |
+
else:
|
| 385 |
+
st.info("Add more products to see visualizations")
|
| 386 |
|
| 387 |
if __name__ == "__main__":
|
| 388 |
main()
|