Spaces:
Running
Running
| import gradio as gr | |
| from random import randint | |
| from all_models import models | |
| from externalmod import gr_Interface_load, randomize_seed | |
| import asyncio | |
| import os | |
| from threading import RLock | |
| # Create a lock to ensure thread safety when accessing shared resources | |
| lock = RLock() | |
| # Load Hugging Face token from environment variable, if available | |
| HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary. | |
| # Function to load all models specified in the 'models' list | |
| def load_fn(models): | |
| global models_load | |
| models_load = {} | |
| # Iterate through all models to load them | |
| for model in models: | |
| if model not in models_load.keys(): | |
| try: | |
| # Log model loading attempt | |
| print(f"Attempting to load model: {model}") | |
| # Load model interface using externalmod function | |
| m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN) | |
| print(f"Successfully loaded model: {model}") | |
| except Exception as error: | |
| # In case of an error, print it and create a placeholder interface | |
| print(f"Error loading model {model}: {error}") | |
| m = gr.Interface(lambda: None, ['text'], ['image']) | |
| # Update the models_load dictionary with the loaded model | |
| models_load.update({model: m}) | |
| # Load all models defined in the 'models' list | |
| print("Loading models...") | |
| load_fn(models) | |
| print("Models loaded successfully.") | |
| num_models = 6 | |
| # Set the default models to use for inference | |
| default_models = models[:num_models] | |
| inference_timeout = 600 | |
| MAX_SEED = 3999999999 | |
| # Generate a starting seed randomly between 1941 and 2024 | |
| starting_seed = randint(1941, 2024) | |
| print(f"Starting seed: {starting_seed}") | |
| # Extend the choices list to ensure it contains 'num_models' elements | |
| def extend_choices(choices): | |
| print(f"Extending choices: {choices}") | |
| extended = choices[:num_models] + (num_models - len(choices[:num_models])) * ['NA'] | |
| print(f"Extended choices: {extended}") | |
| return extended | |
| # Update the image boxes based on selected models | |
| def update_imgbox(choices): | |
| print(f"Updating image boxes with choices: {choices}") | |
| choices_plus = extend_choices(choices[:num_models]) | |
| imgboxes = [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus] | |
| print(f"Updated image boxes: {imgboxes}") | |
| return imgboxes | |
| # Asynchronous function to perform inference on a given model | |
| async def infer(model_str, prompt, seed=1, timeout=inference_timeout): | |
| from pathlib import Path | |
| kwargs = {} | |
| noise = "" | |
| kwargs["seed"] = seed | |
| # Create an asynchronous task to run the model inference | |
| print(f"Starting inference for model: {model_str} with prompt: '{prompt}' and seed: {seed}") | |
| task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, | |
| prompt=f'{prompt} {noise}', **kwargs, token=HF_TOKEN)) | |
| await asyncio.sleep(0) # Allow other tasks to run | |
| try: | |
| # Wait for the task to complete within the specified timeout | |
| result = await asyncio.wait_for(task, timeout=timeout) | |
| print(f"Inference completed for model: {model_str}") | |
| except (Exception, asyncio.TimeoutError) as e: | |
| # Handle any exceptions or timeout errors | |
| print(f"Error during inference for model {model_str}: {e}") | |
| if not task.done(): | |
| task.cancel() | |
| print(f"Task cancelled for model: {model_str}") | |
| result = None | |
| # If the task completed successfully, save the result as an image | |
| if task.done() and result is not None: | |
| with lock: | |
| png_path = "image.png" | |
| result.save(png_path) | |
| image = str(Path(png_path).resolve()) | |
| print(f"Result saved as image: {image}") | |
| return image | |
| print(f"No result for model: {model_str}") | |
| return None | |
| # Function to generate an image based on the given model, prompt, and seed | |
| def gen_fnseed(model_str, prompt, seed=1): | |
| if model_str == 'NA': | |
| print(f"Model is 'NA', skipping generation.") | |
| return None | |
| try: | |
| # Create a new event loop to run the asynchronous inference function | |
| print(f"Generating image for model: {model_str} with prompt: '{prompt}' and seed: {seed}") | |
| loop = asyncio.new_event_loop() | |
| result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout)) | |
| except (Exception, asyncio.CancelledError) as e: | |
| # Handle any exceptions or cancelled tasks | |
| print(f"Error during generation for model {model_str}: {e}") | |
| result = None | |
| finally: | |
| # Close the event loop | |
| loop.close() | |
| print(f"Event loop closed for model: {model_str}") | |
| return result | |
| # Create the Gradio Blocks interface with a custom theme | |
| print("Creating Gradio interface...") | |
| with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: | |
| gr.HTML("<center><h1>Compare-6</h1></center>") | |
| with gr.Tab('Compare-6'): | |
| # Text input for user prompt | |
| txt_input = gr.Textbox(label='Your prompt:', lines=4) | |
| # Button to generate images | |
| gen_button = gr.Button('Generate up to 6 images in up to 3 minutes total') | |
| with gr.Row(): | |
| # Slider to select a seed for reproducibility | |
| seed = gr.Slider(label="Use a seed to replicate the same image later (maximum 3999999999)", minimum=0, maximum=MAX_SEED, step=1, value=starting_seed, scale=3) | |
| # Button to randomize the seed | |
| seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary", scale=1) | |
| # Set up click event to randomize the seed | |
| seed_rand.click(randomize_seed, None, [seed], queue=False) | |
| print("Seed randomization button set up.") | |
| # Button click to start generation | |
| gen_button.click(lambda s: gr.update(interactive=True), None) | |
| print("Generation button set up.") | |
| with gr.Row(): | |
| # Create image output components for each model | |
| output = [gr.Image(label=m, min_width=480) for m in default_models] | |
| # Create hidden textboxes to store the current models | |
| current_models = [gr.Textbox(m, visible=False) for m in default_models] | |
| # Set up generation events for each model and output image | |
| for m, o in zip(current_models, output): | |
| print(f"Setting up generation event for model: {m.value}") | |
| gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fnseed, | |
| inputs=[m, txt_input, seed], outputs=[o], concurrency_limit=None, queue=False) | |
| # The commented stop button could be used to cancel the generation event | |
| #stop_button.click(lambda s: gr.update(interactive=False), None, stop_button, cancels=[gen_event]) | |
| # Accordion to allow model selection | |
| with gr.Accordion('Model selection'): | |
| # Checkbox group to select up to 'num_models' different models | |
| model_choice = gr.CheckboxGroup(models, label=f'Choose up to {int(num_models)} different models from the {len(models)} available!', value=default_models, interactive=True) | |
| # Update image boxes and current models based on model selection | |
| model_choice.change(update_imgbox, model_choice, output) | |
| model_choice.change(extend_choices, model_choice, current_models) | |
| print("Model selection setup complete.") | |
| with gr.Row(): | |
| # Placeholder HTML to add additional UI elements if needed | |
| gr.HTML( | |
| ) | |
| # Queue settings for handling multiple concurrent requests | |
| print("Setting up queue...") | |
| demo.queue(default_concurrency_limit=200, max_size=200) | |
| print("Launching Gradio interface...") | |
| demo.launch(show_api=False, max_threads=400) | |
| print("Gradio interface launched successfully.") |