Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import re | |
| import requests | |
| import json | |
| import os | |
| from screenshot import BG_COMP, BOX_COMP, GENERATION_VAR, PROMPT_VAR, main | |
| from pathlib import Path | |
| title = "BLOOM" | |
| description = """Gradio Demo for BLOOM. To use it, simply add your text, or click one of the examples to load them. | |
| Tips: | |
| - Do NOT talk to BLOOM as an entity, it's not a chatbot but a webpage/blog/article completion model. | |
| - For the best results: MIMIC a few sentences of a webpage similar to the content you want to generate. | |
| Start a paragraph as if YOU were writing a blog, webpage, math post, coding article and BLOOM will generate a coherent follow-up. Longer prompts usually give more interesting results. | |
| Options: | |
| - sampling: imaginative completions (may be not super accurate e.g. math/history) | |
| - greedy: accurate completions (may be more boring or have repetitions) | |
| """ | |
| API_URL = os.getenv("API_URL") | |
| TOKEN = os.getenv("TOKEN") | |
| examples = [ | |
| [ | |
| 'A "whatpu" is a small, furry animal native to Tanzania. An example of a sentence that uses the word whatpu is: We were traveling in Africa and we saw these very cute whatpus. To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:', | |
| 32, | |
| "Sample", | |
| False, | |
| "Sample 1", | |
| ], | |
| [ | |
| "A poem about the beauty of science by Alfred Edgar Brittle\nTitle: The Magic Craft\nIn the old times", | |
| 50, | |
| "Sample", | |
| False, | |
| "Sample 1", | |
| ], | |
| ["استخراج العدد العاملي في لغة بايثون:", 30, "Greedy", False, "Sample 1"], | |
| ["Pour déguster un ortolan, il faut tout d'abord", 32, "Sample", False, "Sample 1"], | |
| [ | |
| "Traduce español de España a español de Argentina\nEl coche es rojo - el auto es rojo\nEl ordenador es nuevo - la computadora es nueva\nel boligrafo es negro -", | |
| 16, | |
| "Sample", | |
| False, | |
| "Sample 1", | |
| ], | |
| [ | |
| "Estos ejemplos quitan vocales de las palabras\nEjemplos:\nhola - hl\nmanzana - mnzn\npapas - pps\nalacran - lcrn\npapa -", | |
| 16, | |
| "Sample", | |
| False, | |
| "Sample 1", | |
| ], | |
| [ | |
| "Question: If I put cheese into the fridge, will it melt?\nAnswer:", | |
| 32, | |
| "Sample", | |
| False, | |
| "Sample 1", | |
| ], | |
| ["Math exercise - answers:\n34+10=44\n54+20=", 16, "Greedy", False, "Sample 1"], | |
| [ | |
| "Question: Where does the Greek Goddess Persephone spend half of the year when she is not with her mother?\nAnswer:", | |
| 24, | |
| "Greedy", | |
| False, | |
| "Sample 1", | |
| ], | |
| [ | |
| "spelling test answers.\nWhat are the letters in « language »?\nAnswer: l-a-n-g-u-a-g-e\nWhat are the letters in « Romanian »?\nAnswer:", | |
| 24, | |
| "Greedy", | |
| False, | |
| "Sample 1", | |
| ], | |
| ] | |
| def query(payload): | |
| print(payload) | |
| response = requests.request("POST", API_URL, json=payload, headers={"Authorization": f"Bearer {TOKEN}"}) | |
| print(response) | |
| return json.loads(response.content.decode("utf-8")) | |
| def inference(input_sentence, max_length, sample_or_greedy, raw_text=False, seed=42): | |
| if sample_or_greedy == "Sample": | |
| parameters = { | |
| "max_new_tokens": max_length, | |
| "top_p": 0.9, | |
| "do_sample": True, | |
| "seed": seed, | |
| "early_stopping": False, | |
| "length_penalty": 0.0, | |
| "eos_token_id": None, | |
| } | |
| else: | |
| parameters = { | |
| "max_new_tokens": max_length, | |
| "do_sample": False, | |
| "seed": seed, | |
| "early_stopping": False, | |
| "length_penalty": 0.0, | |
| "eos_token_id": None, | |
| } | |
| payload = {"inputs": input_sentence, "parameters": parameters} | |
| data = query(payload) | |
| if raw_text: | |
| return None, data[0]["generated_text"] | |
| width, height = 3246, 3246 | |
| assets_path = "assets" | |
| font_mapping = { | |
| "latin characters (faster)": "DejaVuSans.ttf", | |
| "complete alphabet (slower)": "GoNotoCurrent.ttf", | |
| } | |
| working_dir = Path(__file__).parent.resolve() | |
| font_path = str(working_dir / font_mapping["complete alphabet (slower)"]) | |
| img_save_path = str(working_dir / "output.jpeg") | |
| colors = { | |
| BG_COMP: "#000000", | |
| PROMPT_VAR: "#FFFFFF", | |
| GENERATION_VAR: "#FF57A0", | |
| BOX_COMP: "#120F25", | |
| } | |
| new_string = data[0]["generated_text"].split(input_sentence, 1)[1] | |
| return data[0]["generated_text"] | |
| gr.Interface( | |
| inference, | |
| [ | |
| gr.inputs.Textbox(label="Input"), | |
| gr.inputs.Slider(1, 64, default=32, step=1, label="Tokens to generate"), | |
| gr.inputs.Radio( | |
| ["Sample", "Greedy"], label="Sample or greedy", default="Sample" | |
| ), | |
| gr.Checkbox(label="Just output raw text"), | |
| gr.inputs.Radio( | |
| ["Sample 1", "Sample 2", "Sample 3", "Sample 4", "Sample 5"], | |
| default="Sample 1", | |
| label="Sample other generations (only work in 'Sample' mode", | |
| type="index", | |
| ), | |
| ], | |
| ["text"], | |
| examples=examples, | |
| # article=article, | |
| cache_examples=False, | |
| title=title, | |
| description=description, | |
| ).launch() | |