cosmos_transfer1_av / test_environment.py
harry900000's picture
fix environment problem
6d7fc1c
raw
history blame
2.53 kB
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import importlib
import os
import sys
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--training",
action="store_true",
help="Whether to check training-specific dependencies",
)
return parser.parse_args()
def check_packages(package_list):
global all_success
for package in package_list:
try:
_ = importlib.import_module(package)
except Exception:
print(f"\033[91m[ERROR]\033[0m Package not successfully imported: \033[93m{package}\033[0m")
all_success = False
else:
print(f"\033[92m[SUCCESS]\033[0m {package} found")
def main():
args = parse_args()
if not (sys.version_info.major == 3 and sys.version_info.minor >= 10):
detected = f"{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}"
print(f"\033[91m[ERROR]\033[0m Python 3.10+ is required. You have: \033[93m{detected}\033[0m")
sys.exit(1)
if "CONDA_PREFIX" not in os.environ:
print(
"\033[93m[WARNING]\033[0m CONDA_PREFIX is not set. When manually installed, Cosmos should run under the cosmos-transfer1 conda environment (see INSTALL.md). This warning can be ignored when running in the container."
)
print("Attempting to import critical packages...")
packages = ["torch", "torchvision", "transformers", "megatron.core", "transformer_engine", "vllm", "pandas"]
packages_training = [
"apex.multi_tensor_apply",
]
all_success = True
check_packages(packages)
if args.training:
check_packages(packages_training)
if all_success:
print("-----------------------------------------------------------")
print("\033[92m[SUCCESS]\033[0m Cosmos environment setup is successful!")