Spaces:
Sleeping
Sleeping
Add files
Browse files- .gitignore +1 -0
- .gitmodules +3 -0
- app.py +159 -0
- gan-control +1 -0
- patch +157 -0
- requirements.txt +4 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
controller_age015id025exp02hai04ori02gam15
|
.gitmodules
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[submodule "gan-control"]
|
| 2 |
+
path = gan-control
|
| 3 |
+
url = https://github.com/amazon-research/gan-control
|
app.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import argparse
|
| 6 |
+
import functools
|
| 7 |
+
import os
|
| 8 |
+
import pathlib
|
| 9 |
+
import subprocess
|
| 10 |
+
import sys
|
| 11 |
+
import tarfile
|
| 12 |
+
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import huggingface_hub
|
| 15 |
+
import numpy as np
|
| 16 |
+
import PIL.Image
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
if os.environ.get('SYSTEM') == 'spaces':
|
| 20 |
+
subprocess.call('git apply ../patch'.split(), cwd='gan-control')
|
| 21 |
+
|
| 22 |
+
sys.path.insert(0, 'gan-control/src')
|
| 23 |
+
|
| 24 |
+
from gan_control.inference.controller import Controller
|
| 25 |
+
|
| 26 |
+
TITLE = 'amazon-research/gan-control'
|
| 27 |
+
DESCRIPTION = 'This is a demo for https://github.com/amazon-research/gan-control.'
|
| 28 |
+
ARTICLE = None
|
| 29 |
+
|
| 30 |
+
TOKEN = os.environ['TOKEN']
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def parse_args() -> argparse.Namespace:
|
| 34 |
+
parser = argparse.ArgumentParser()
|
| 35 |
+
parser.add_argument('--device', type=str, default='cpu')
|
| 36 |
+
parser.add_argument('--theme', type=str)
|
| 37 |
+
parser.add_argument('--live', action='store_true')
|
| 38 |
+
parser.add_argument('--share', action='store_true')
|
| 39 |
+
parser.add_argument('--port', type=int)
|
| 40 |
+
parser.add_argument('--disable-queue',
|
| 41 |
+
dest='enable_queue',
|
| 42 |
+
action='store_false')
|
| 43 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
| 44 |
+
parser.add_argument('--allow-screenshot', action='store_true')
|
| 45 |
+
return parser.parse_args()
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def download_models() -> None:
|
| 49 |
+
model_dir = pathlib.Path('controller_age015id025exp02hai04ori02gam15')
|
| 50 |
+
if not model_dir.exists():
|
| 51 |
+
path = huggingface_hub.hf_hub_download(
|
| 52 |
+
'hysts/gan-control',
|
| 53 |
+
'controller_age015id025exp02hai04ori02gam15.tar.gz',
|
| 54 |
+
use_auth_token=TOKEN)
|
| 55 |
+
with tarfile.open(path) as f:
|
| 56 |
+
f.extractall()
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@torch.inference_mode()
|
| 60 |
+
def run(
|
| 61 |
+
seed: int,
|
| 62 |
+
truncation: float,
|
| 63 |
+
yaw: int,
|
| 64 |
+
pitch: int,
|
| 65 |
+
age: int,
|
| 66 |
+
hair_color_r: float,
|
| 67 |
+
hair_color_g: float,
|
| 68 |
+
hair_color_b: float,
|
| 69 |
+
nrows: int,
|
| 70 |
+
ncols: int,
|
| 71 |
+
controller: Controller,
|
| 72 |
+
device: torch.device,
|
| 73 |
+
) -> PIL.Image.Image:
|
| 74 |
+
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
|
| 75 |
+
batch_size = nrows * ncols
|
| 76 |
+
latent_size = controller.config.model_config['latent_size']
|
| 77 |
+
latent = torch.from_numpy(
|
| 78 |
+
np.random.RandomState(seed).randn(batch_size,
|
| 79 |
+
latent_size)).float().to(device)
|
| 80 |
+
|
| 81 |
+
initial_image_tensors, initial_latent_z, initial_latent_w = controller.gen_batch(
|
| 82 |
+
latent=latent, truncation=truncation)
|
| 83 |
+
res0 = controller.make_resized_grid_image(initial_image_tensors,
|
| 84 |
+
nrow=ncols)
|
| 85 |
+
|
| 86 |
+
pose_control = torch.tensor([[yaw, pitch, 0]], dtype=torch.float32)
|
| 87 |
+
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
|
| 88 |
+
latent=initial_latent_w,
|
| 89 |
+
input_is_latent=True,
|
| 90 |
+
orientation=pose_control)
|
| 91 |
+
res1 = controller.make_resized_grid_image(image_tensors, nrow=ncols)
|
| 92 |
+
|
| 93 |
+
age_control = torch.tensor([[age]], dtype=torch.float32)
|
| 94 |
+
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
|
| 95 |
+
latent=initial_latent_w, input_is_latent=True, age=age_control)
|
| 96 |
+
res2 = controller.make_resized_grid_image(image_tensors, nrow=ncols)
|
| 97 |
+
|
| 98 |
+
hair_color = torch.tensor([[hair_color_r, hair_color_g, hair_color_b]],
|
| 99 |
+
dtype=torch.float32) / 255
|
| 100 |
+
hair_color = torch.clamp(hair_color, 0, 1)
|
| 101 |
+
image_tensors, _, modified_latent_w = controller.gen_batch_by_controls(
|
| 102 |
+
latent=initial_latent_w, input_is_latent=True, hair=hair_color)
|
| 103 |
+
res3 = controller.make_resized_grid_image(image_tensors, nrow=ncols)
|
| 104 |
+
|
| 105 |
+
return res0, res1, res2, res3
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def main():
|
| 109 |
+
args = parse_args()
|
| 110 |
+
device = torch.device(args.device)
|
| 111 |
+
|
| 112 |
+
download_models()
|
| 113 |
+
|
| 114 |
+
path = 'controller_age015id025exp02hai04ori02gam15/'
|
| 115 |
+
controller = Controller(path, device)
|
| 116 |
+
|
| 117 |
+
func = functools.partial(run, controller=controller, device=device)
|
| 118 |
+
func = functools.update_wrapper(func, run)
|
| 119 |
+
|
| 120 |
+
gr.Interface(
|
| 121 |
+
func,
|
| 122 |
+
[
|
| 123 |
+
gr.inputs.Number(default=0, label='Seed'),
|
| 124 |
+
gr.inputs.Slider(0, 1, step=0.1, default=0.7, label='Truncation'),
|
| 125 |
+
gr.inputs.Slider(-90, 90, step=1, default=30, label='Yaw'),
|
| 126 |
+
gr.inputs.Slider(-90, 90, step=1, default=0, label='Pitch'),
|
| 127 |
+
gr.inputs.Slider(15, 75, step=1, default=75, label='Age'),
|
| 128 |
+
gr.inputs.Slider(
|
| 129 |
+
0, 255, step=1, default=186, label='Hair Color (R)'),
|
| 130 |
+
gr.inputs.Slider(
|
| 131 |
+
0, 255, step=1, default=158, label='Hair Color (G)'),
|
| 132 |
+
gr.inputs.Slider(
|
| 133 |
+
0, 255, step=1, default=92, label='Hair Color (B)'),
|
| 134 |
+
gr.inputs.Slider(1, 10, step=1, default=1, label='Number of Rows'),
|
| 135 |
+
gr.inputs.Slider(
|
| 136 |
+
1, 10, step=1, default=5, label='Number of Columns'),
|
| 137 |
+
],
|
| 138 |
+
[
|
| 139 |
+
gr.outputs.Image(type='pil', label='Generated Image'),
|
| 140 |
+
gr.outputs.Image(type='pil', label='Head Pose Controlled'),
|
| 141 |
+
gr.outputs.Image(type='pil', label='Age Controlled'),
|
| 142 |
+
gr.outputs.Image(type='pil', label='Hair Color Controlled'),
|
| 143 |
+
],
|
| 144 |
+
title=TITLE,
|
| 145 |
+
description=DESCRIPTION,
|
| 146 |
+
article=ARTICLE,
|
| 147 |
+
theme=args.theme,
|
| 148 |
+
allow_screenshot=args.allow_screenshot,
|
| 149 |
+
allow_flagging=args.allow_flagging,
|
| 150 |
+
live=args.live,
|
| 151 |
+
).launch(
|
| 152 |
+
enable_queue=args.enable_queue,
|
| 153 |
+
server_port=args.port,
|
| 154 |
+
share=args.share,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
if __name__ == '__main__':
|
| 159 |
+
main()
|
gan-control
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
Subproject commit 057805e4a33298716d323c3e4f0754e20ab4153d
|
patch
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diff --git a/src/gan_control/inference/controller.py b/src/gan_control/inference/controller.py
|
| 2 |
+
index ee464ba..d1907dd 100644
|
| 3 |
+
--- a/src/gan_control/inference/controller.py
|
| 4 |
+
+++ b/src/gan_control/inference/controller.py
|
| 5 |
+
@@ -13,9 +13,9 @@ _log = get_logger(__name__)
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Controller(Inference):
|
| 9 |
+
- def __init__(self, controller_dir):
|
| 10 |
+
+ def __init__(self, controller_dir, device):
|
| 11 |
+
_log.info('Init Controller class...')
|
| 12 |
+
- super(Controller, self).__init__(os.path.join(controller_dir, 'generator'))
|
| 13 |
+
+ super(Controller, self).__init__(os.path.join(controller_dir, 'generator'), device)
|
| 14 |
+
self.fc_controls = {}
|
| 15 |
+
self.config_controls = {}
|
| 16 |
+
for sub_group_name in self.batch_utils.sub_group_names:
|
| 17 |
+
@@ -29,21 +29,21 @@ class Controller(Inference):
|
| 18 |
+
@torch.no_grad()
|
| 19 |
+
def gen_batch_by_controls(self, batch_size=1, latent=None, normalize=True, input_is_latent=False, static_noise=True, **kwargs):
|
| 20 |
+
if latent is None:
|
| 21 |
+
- latent = torch.randn(batch_size, self.config.model_config['latent_size'], device='cuda')
|
| 22 |
+
+ latent = torch.randn(batch_size, self.config.model_config['latent_size'], device=self.device)
|
| 23 |
+
latent = latent.clone()
|
| 24 |
+
if input_is_latent:
|
| 25 |
+
latent_w = latent
|
| 26 |
+
else:
|
| 27 |
+
if isinstance(self.model, torch.nn.DataParallel):
|
| 28 |
+
- latent_w = self.model.module.style(latent.cuda())
|
| 29 |
+
+ latent_w = self.model.module.style(latent.to(self.device))
|
| 30 |
+
else:
|
| 31 |
+
- latent_w = self.model.style(latent.cuda())
|
| 32 |
+
+ latent_w = self.model.style(latent.to(self.device))
|
| 33 |
+
for group_key in kwargs.keys():
|
| 34 |
+
if self.check_if_group_has_control(group_key):
|
| 35 |
+
if group_key == 'expression' and kwargs[group_key].shape[1] == 8:
|
| 36 |
+
- group_w_latent = self.fc_controls['expression_q'](kwargs[group_key].cuda().float())
|
| 37 |
+
+ group_w_latent = self.fc_controls['expression_q'](kwargs[group_key].to(self.device).float())
|
| 38 |
+
else:
|
| 39 |
+
- group_w_latent = self.fc_controls[group_key](kwargs[group_key].cuda().float())
|
| 40 |
+
+ group_w_latent = self.fc_controls[group_key](kwargs[group_key].to(self.device).float())
|
| 41 |
+
latent_w = self.insert_group_w_latent(latent_w, group_w_latent, group_key)
|
| 42 |
+
injection_noise = None
|
| 43 |
+
if static_noise:
|
| 44 |
+
@@ -101,12 +101,12 @@ class Controller(Inference):
|
| 45 |
+
ckpt_path = ckpt_list[-1]
|
| 46 |
+
ckpt_iter = ckpt_path.split('.')[0]
|
| 47 |
+
config = read_json(config_path, return_obj=True)
|
| 48 |
+
- ckpt = torch.load(os.path.join(checkpoints_path, ckpt_path))
|
| 49 |
+
+ ckpt = torch.load(os.path.join(checkpoints_path, ckpt_path), map_location=self.device)
|
| 50 |
+
group_chunk = self.batch_utils.place_in_latent_dict[sub_group_name if sub_group_name is not 'expression_q' else 'expression']
|
| 51 |
+
group_latent_size = group_chunk[1] - group_chunk[0]
|
| 52 |
+
|
| 53 |
+
_log.info('Init %s Controller...' % sub_group_name)
|
| 54 |
+
- controller = FcStack(config.model_config['lr_mlp'], config.model_config['n_mlp'], config.model_config['in_dim'], config.model_config['mid_dim'], group_latent_size).cuda()
|
| 55 |
+
+ controller = FcStack(config.model_config['lr_mlp'], config.model_config['n_mlp'], config.model_config['in_dim'], config.model_config['mid_dim'], group_latent_size).to(self.device)
|
| 56 |
+
controller.print()
|
| 57 |
+
|
| 58 |
+
_log.info('Loading Controller: %s, ckpt iter %s' % (controller_dir_path, ckpt_iter))
|
| 59 |
+
diff --git a/src/gan_control/inference/inference.py b/src/gan_control/inference/inference.py
|
| 60 |
+
index e6ccedb..4393bb7 100644
|
| 61 |
+
--- a/src/gan_control/inference/inference.py
|
| 62 |
+
+++ b/src/gan_control/inference/inference.py
|
| 63 |
+
@@ -15,10 +15,11 @@ _log = get_logger(__name__)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class Inference():
|
| 67 |
+
- def __init__(self, model_dir):
|
| 68 |
+
+ def __init__(self, model_dir, device):
|
| 69 |
+
_log.info('Init inference class...')
|
| 70 |
+
self.model_dir = model_dir
|
| 71 |
+
- self.model, self.batch_utils, self.config, self.ckpt_iter = self.retrieve_model(model_dir)
|
| 72 |
+
+ self.device = device
|
| 73 |
+
+ self.model, self.batch_utils, self.config, self.ckpt_iter = self.retrieve_model(model_dir, device)
|
| 74 |
+
self.noise = None
|
| 75 |
+
self.reset_noise()
|
| 76 |
+
self.mean_w_latent = None
|
| 77 |
+
@@ -28,7 +29,7 @@ class Inference():
|
| 78 |
+
_log.info('Calc mean_w_latents...')
|
| 79 |
+
mean_latent_w_list = []
|
| 80 |
+
for i in range(100):
|
| 81 |
+
- latent_z = torch.randn(1000, self.config.model_config['latent_size'], device='cuda')
|
| 82 |
+
+ latent_z = torch.randn(1000, self.config.model_config['latent_size'], device=self.device)
|
| 83 |
+
if isinstance(self.model, torch.nn.DataParallel):
|
| 84 |
+
latent_w = self.model.module.style(latent_z).cpu()
|
| 85 |
+
else:
|
| 86 |
+
@@ -41,9 +42,9 @@ class Inference():
|
| 87 |
+
|
| 88 |
+
def reset_noise(self):
|
| 89 |
+
if isinstance(self.model, torch.nn.DataParallel):
|
| 90 |
+
- self.noise = self.model.module.make_noise(device='cuda')
|
| 91 |
+
+ self.noise = self.model.module.make_noise(device=self.device)
|
| 92 |
+
else:
|
| 93 |
+
- self.noise = self.model.make_noise(device='cuda')
|
| 94 |
+
+ self.noise = self.model.make_noise(device=self.device)
|
| 95 |
+
|
| 96 |
+
@staticmethod
|
| 97 |
+
def expend_noise(noise, batch_size):
|
| 98 |
+
@@ -56,14 +57,14 @@ class Inference():
|
| 99 |
+
self.calc_mean_w_latents()
|
| 100 |
+
injection_noise = None
|
| 101 |
+
if latent is None:
|
| 102 |
+
- latent = torch.randn(batch_size, self.config.model_config['latent_size'], device='cuda')
|
| 103 |
+
+ latent = torch.randn(batch_size, self.config.model_config['latent_size'], device=self.device)
|
| 104 |
+
elif input_is_latent:
|
| 105 |
+
- latent = latent.cuda()
|
| 106 |
+
+ latent = latent.to(self.device)
|
| 107 |
+
for group_key in kwargs.keys():
|
| 108 |
+
if group_key not in self.batch_utils.sub_group_names:
|
| 109 |
+
raise ValueError('group_key: %s not in sub_group_names %s' % (group_key, str(self.batch_utils.sub_group_names)))
|
| 110 |
+
if isinstance(kwargs[group_key], str) and kwargs[group_key] == 'random':
|
| 111 |
+
- group_latent_w = self.model.style(torch.randn(latent.shape[0], self.config.model_config['latent_size'], device='cuda'))
|
| 112 |
+
+ group_latent_w = self.model.style(torch.randn(latent.shape[0], self.config.model_config['latent_size'], device=self.device))
|
| 113 |
+
group_latent_w = group_latent_w[:, self.batch_utils.place_in_latent_dict[group_key][0], self.batch_utils.place_in_latent_dict[group_key][0]]
|
| 114 |
+
latent[:, self.batch_utils.place_in_latent_dict[group_key][0], self.batch_utils.place_in_latent_dict[group_key][0]] = group_latent_w
|
| 115 |
+
if static_noise:
|
| 116 |
+
@@ -82,11 +83,11 @@ class Inference():
|
| 117 |
+
latent[:, place_in_latent[0]: place_in_latent[1]] = \
|
| 118 |
+
truncation * (latent[:, place_in_latent[0]: place_in_latent[1]] - torch.cat(
|
| 119 |
+
[self.mean_w_latents[key].clone().unsqueeze(0) for _ in range(latent.shape[0])], dim=0
|
| 120 |
+
- ).cuda()) + torch.cat(
|
| 121 |
+
+ ).to(self.device)) + torch.cat(
|
| 122 |
+
[self.mean_w_latents[key].clone().unsqueeze(0) for _ in range(latent.shape[0])], dim=0
|
| 123 |
+
- ).cuda()
|
| 124 |
+
+ ).to(self.device)
|
| 125 |
+
|
| 126 |
+
- tensor, latent_w = self.model([latent.cuda()], return_latents=True, input_is_latent=input_is_latent, noise=injection_noise)
|
| 127 |
+
+ tensor, latent_w = self.model([latent.to(self.device)], return_latents=True, input_is_latent=input_is_latent, noise=injection_noise)
|
| 128 |
+
if normalize:
|
| 129 |
+
tensor = tensor.mul(0.5).add(0.5).clamp(min=0., max=1.).cpu()
|
| 130 |
+
return tensor, latent, latent_w
|
| 131 |
+
@@ -107,7 +108,7 @@ class Inference():
|
| 132 |
+
return grid_image
|
| 133 |
+
|
| 134 |
+
@staticmethod
|
| 135 |
+
- def retrieve_model(model_dir):
|
| 136 |
+
+ def retrieve_model(model_dir, device):
|
| 137 |
+
config_path = os.path.join(model_dir, 'args.json')
|
| 138 |
+
|
| 139 |
+
_log.info('Retrieve config from %s' % config_path)
|
| 140 |
+
@@ -117,7 +118,7 @@ class Inference():
|
| 141 |
+
ckpt_path = ckpt_list[-1]
|
| 142 |
+
ckpt_iter = ckpt_path.split('.')[0]
|
| 143 |
+
config = read_json(config_path, return_obj=True)
|
| 144 |
+
- ckpt = torch.load(os.path.join(checkpoints_path, ckpt_path))
|
| 145 |
+
+ ckpt = torch.load(os.path.join(checkpoints_path, ckpt_path), map_location=device)
|
| 146 |
+
|
| 147 |
+
batch_utils = None
|
| 148 |
+
if not config.model_config['vanilla']:
|
| 149 |
+
@@ -140,7 +141,7 @@ class Inference():
|
| 150 |
+
fc_config=None if config.model_config['vanilla'] else batch_utils.get_fc_config(),
|
| 151 |
+
conv_transpose=config.model_config['conv_transpose'],
|
| 152 |
+
noise_mode=config.model_config['g_noise_mode']
|
| 153 |
+
- ).cuda()
|
| 154 |
+
+ ).to(device)
|
| 155 |
+
_log.info('Loading Model: %s, ckpt iter %s' % (model_dir, ckpt_iter))
|
| 156 |
+
model.load_state_dict(ckpt['g_ema'])
|
| 157 |
+
model = torch.nn.DataParallel(model)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.22.3
|
| 2 |
+
Pillow==9.1.0
|
| 3 |
+
torch==1.11.0
|
| 4 |
+
torchvision==0.12.0
|