File size: 35,983 Bytes
6d55fec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 |
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
import json
import asyncio
import os
from typing import List, Dict, Any
from datetime import datetime, timezone
# Apply nest_asyncio to allow nested event loops
try:
import nest_asyncio
nest_asyncio.apply()
except ImportError:
pass
# Import your custom modules
try:
from agents.evaluation_agent import EvaluationAgent
from schemas.data_models import EvaluationRequest, MetricType, APIProvider
from config import settings
from utils.cache_manager import clear_cache, get_cache_stats
except ImportError as e:
st.error(f"Import error: {e}. Please make sure all required modules are available.")
st.stop()
# Page configuration
st.set_page_config(
page_title="LLM Evaluation Platform",
page_icon="π€",
layout="wide",
initial_sidebar_state="expanded"
)
# Initialize session state
if "evaluation_results" not in st.session_state:
st.session_state.evaluation_results = None
if "evaluation_history" not in st.session_state:
st.session_state.evaluation_history = []
if "evaluation_in_progress" not in st.session_state:
st.session_state.evaluation_in_progress = False
if "active_tab" not in st.session_state:
st.session_state.active_tab = "Evaluate"
if "evaluation_params" not in st.session_state:
st.session_state.evaluation_params = {}
if "show_results" not in st.session_state:
st.session_state.show_results = False
def run_evaluation_sync(request: EvaluationRequest):
"""Run evaluation synchronously with proper event loop handling"""
try:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
agent = EvaluationAgent()
result = loop.run_until_complete(agent.evaluate_async(request))
loop.close()
return result
except Exception as e:
st.error(f"Evaluation error: {e}")
return None
def create_metric_radar_chart(scores: Dict[str, float]) -> go.Figure:
metrics = list(scores.keys())
values = list(scores.values())
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=values + [values[0]],
theta=metrics + [metrics[0]],
fill='toself',
fillcolor='rgba(100, 149, 237, 0.3)',
line=dict(color='rgba(100, 149, 237, 0.8)', width=3),
name='Metrics Score',
hoverinfo='text',
hovertext=[f'{metric}: {score:.1f}%' for metric, score in zip(metrics, values)]
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100],
tickfont=dict(size=10),
tickangle=0,
tickvals=[0, 20, 40, 60, 80, 100],
ticktext=['0%', '20%', '40%', '60%', '80%', '100%']
),
angularaxis=dict(
tickfont=dict(size=11),
rotation=90
)
),
showlegend=False,
title=dict(
text="Performance Metrics Radar",
x=0.5,
xanchor='center',
font=dict(size=16)
),
height=450,
margin=dict(l=50, r=50, t=80, b=50),
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)'
)
return fig
def create_metric_bar_chart(scores: Dict[str, float]) -> go.Figure:
metrics = [m.capitalize() for m in scores.keys()]
values = list(scores.values())
# Create color scale based on score values - inverted for toxicity
colors = []
for metric, score in zip(metrics, values):
if 'toxicity' in metric.lower():
# For toxicity, lower is better (green), higher is worse (red)
colors.append(f'hsl({int(120 * (100-score)/100)}, 70%, 50%)')
else:
# For other metrics, higher is better
colors.append(f'hsl({int(120 * score/100)}, 70%, 50%)')
fig = go.Figure()
fig.add_trace(go.Bar(
x=metrics,
y=values,
marker_color=colors,
marker_line=dict(color='rgba(0,0,0,0.3)', width=1),
text=[f'{v:.1f}%' for v in values],
textposition='auto',
textfont=dict(size=12, color='white'),
hovertemplate='<b>%{x}</b><br>Score: %{y:.1f}%<extra></extra>'
))
fig.update_layout(
title=dict(
text="Average Scores by Metric",
x=0.5,
xanchor='center',
font=dict(size=16)
),
xaxis=dict(
title="Evaluation Metric",
tickangle=45,
tickfont=dict(size=11)
),
yaxis=dict(
title="Score (%)",
range=[0, 100],
tickvals=[0, 20, 40, 60, 80, 100],
ticktext=['0%', '20%', '40%', '60%', '80%', '100%']
),
height=450,
margin=dict(l=50, r=50, t=80, b=80),
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)'
)
return fig
def create_score_distribution_chart(results: List[Any]) -> go.Figure:
if not results or not getattr(results[0], "metrics", None):
return None
metrics = list(results[0].metrics.keys())
fig = go.Figure()
for metric in metrics:
scores = [getattr(r, 'metrics', {}).get(metric, 0) for r in results]
fig.add_trace(go.Violin(
y=scores,
name=metric.capitalize(),
box_visible=True,
meanline_visible=True,
points="all",
hoverinfo='y',
opacity=0.7
))
fig.update_layout(
title=dict(
text="Score Distribution by Metric",
x=0.5,
xanchor='center',
font=dict(size=16)
),
yaxis=dict(
title="Score (%)",
range=[0, 100],
tickvals=[0, 20, 40, 60, 80, 100]
),
xaxis=dict(title="Metric"),
height=400,
showlegend=True,
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)'
)
return fig
def get_score_color(metric: str, score: float) -> str:
"""Get color for a score based on metric type"""
if 'toxicity' in metric.lower():
# For toxicity, lower is better (green), higher is worse (red)
return "green" if score <= 30 else "orange" if score <= 60 else "red"
else:
# For other metrics, higher is better
return "green" if score >= 70 else "orange" if score >= 40 else "red"
def display_results(results):
if not results:
st.error("No results to display")
return
if not hasattr(results, 'individual_results') or not results.individual_results:
st.warning("No individual results available")
return
# Summary
st.subheader("π Evaluation Summary")
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.metric("Total Questions", results.total_questions)
with col2:
st.metric("Total Time", f"{results.total_processing_time:.1f}s")
with col3:
st.metric("Model Used", results.model_used)
with col4:
st.metric("API Provider", results.api_provider)
with col5:
st.metric("Overall Score", f"{results.overall_score:.1f}%")
# Metrics visualization
st.subheader("π Performance Metrics")
if results.average_scores:
col1, col2 = st.columns(2)
with col1:
bar_fig = create_metric_bar_chart(results.average_scores)
st.plotly_chart(bar_fig, use_container_width=True)
with col2:
radar_fig = create_metric_radar_chart(results.average_scores)
st.plotly_chart(radar_fig, use_container_width=True)
dist_fig = create_score_distribution_chart(results.individual_results)
if dist_fig:
st.plotly_chart(dist_fig, use_container_width=True)
else:
st.warning("No metric scores available")
# Detailed results
st.subheader("π Detailed Results")
if results.individual_results:
tab1, tab2 = st.tabs(["Data Table", "Question Details"])
with tab1:
detailed_data = []
for i, result in enumerate(results.individual_results):
row = {
"ID": i + 1,
"Question": result.question[:50] + "..." if len(result.question) > 50 else result.question,
"Response": result.model_response[:50] + "..." if len(result.model_response) > 50 else result.model_response,
"Overall Score": f"{result.overall_score:.1f}%" if hasattr(result, 'overall_score') else "N/A",
"Time (s)": f"{result.processing_time:.2f}"
}
for metric, score in result.metrics.items():
row[metric.capitalize()] = f"{score:.1f}%"
detailed_data.append(row)
st.dataframe(
detailed_data,
use_container_width=True,
height=400,
column_config={
"ID": st.column_config.NumberColumn("ID", width="small"),
"Question": st.column_config.TextColumn("Question", width="large"),
"Response": st.column_config.TextColumn("Response", width="large"),
"Overall Score": st.column_config.NumberColumn("Overall Score", width="medium"),
}
)
with tab2:
for i, result in enumerate(results.individual_results):
with st.expander(f"Question {i+1}: {result.question[:70]}{'...' if len(result.question) > 70 else ''}", expanded=False):
col1, col2 = st.columns([1, 2])
with col1:
st.write("**Question:**")
st.info(result.question)
st.write("**Ground Truth:**")
st.success(result.ground_truth)
st.write("**Model Response:**")
st.info(result.model_response)
st.metric("Processing Time", f"{result.processing_time:.2f}s")
if hasattr(result, 'overall_score'):
st.metric("Overall Score", f"{result.overall_score:.1f}%")
with col2:
metrics_cols = st.columns(3)
metric_items = list(result.metrics.items())
for j, (metric, score) in enumerate(metric_items):
with metrics_cols[j % 3]:
# Use the correct color logic for each metric type
color = get_score_color(metric, score)
st.markdown(f"""
<div style="background-color: rgba(240, 242, 246, 0.5);
padding: 15px;
border-radius: 10px;
border-left: 4px solid {color};
margin-bottom: 10px;">
<h4 style="margin: 0; color: {color};">{metric.capitalize()}</h4>
<h2 style="margin: 5px 0; color: {color};">{score:.1f}%</h2>
</div>
""", unsafe_allow_html=True)
st.write("**Explanations:**")
if hasattr(result, 'explanations') and result.explanations:
selected_explanation = st.selectbox(
"Select metric explanation:",
options=list(result.explanations.keys()),
format_func=lambda x: x.capitalize(),
key=f"explanation_select_{i}"
)
st.text_area(
f"{selected_explanation.capitalize()} Explanation",
value=result.explanations[selected_explanation],
height=150,
key=f"explanation_text_{i}_{selected_explanation}",
disabled=True
)
else:
st.info("No explanations available for this question")
# Export buttons
st.subheader("πΎ Export Results")
col1, col2, col3 = st.columns(3)
with col1:
try:
results_json = results.model_dump_json()
except Exception:
# Fallback serialization
try:
results_json = json.dumps(results.__dict__, default=lambda o: getattr(o, "__dict__", str(o)), indent=2)
except Exception:
results_json = "{}"
st.download_button(
"π Download JSON",
data=results_json,
file_name="evaluation_results.json",
mime="application/json",
use_container_width=True
)
with col2:
csv_data = []
for i, result in enumerate(results.individual_results):
row = {
"ID": i + 1,
"Question": result.question,
"Ground Truth": result.ground_truth,
"Response": result.model_response,
"Overall Score": result.overall_score if hasattr(result, 'overall_score') else 0,
"Time (s)": result.processing_time
}
for metric, score in result.metrics.items():
row[metric.capitalize()] = score
if hasattr(result, 'explanations'):
for metric, explanation in result.explanations.items():
row[f"{metric.capitalize()} Explanation"] = explanation
csv_data.append(row)
df = pd.DataFrame(csv_data)
csv = df.to_csv(index=False)
st.download_button(
"π Download CSV",
data=csv,
file_name="evaluation_results.csv",
mime="text/csv",
use_container_width=True
)
with col3:
html_content = f"""
<html>
<head>
<title>LLM Evaluation Report</title>
<style>
body {{ font-family: Arial, sans-serif; margin: 40px; }}
.header {{ text-align: center; margin-bottom: 30px; }}
.metric {{ background-color: #f8f9fa; padding: 15px; margin: 10px; border-radius: 5px; }}
.score {{ font-size: 24px; font-weight: bold; }}
</style>
</head>
<body>
<div class="header">
<h1>LLM Evaluation Report</h1>
<p>Generated on {pd.Timestamp.now().strftime('%Y-%m-%d %H:%M:%S')}</p>
</div>
<h2>Summary</h2>
<p>Total Questions: {results.total_questions}</p>
<p>Total Time: {results.total_processing_time:.1f}s</p>
<p>Model Used: {results.model_used}</p>
<p>API Provider: {results.api_provider}</p>
<p>Overall Score: {results.overall_score:.1f}%</p>
<h2>Average Scores</h2>
{"".join([f'<div class="metric"><h3>{m.capitalize()}</h3><div class="score">{s:.1f}%</div></div>' for m, s in results.average_scores.items()])}
</body>
</html>
"""
st.download_button(
"π Download HTML Report",
data=html_content,
file_name="evaluation_report.html",
mime="text/html",
use_container_width=True
)
else:
st.warning("No individual results available")
def build_request_object(questions: List[str], ground_truths: List[str], model_responses: List[str],
contexts: List[str], metrics: List[str], provider: str, judge_model: str,
max_concurrent: int):
# Map provider to enum if available
try:
provider_enum = APIProvider.GROQ if provider.lower().startswith("groq") else APIProvider.OPENAI
except Exception:
provider_enum = provider
# Try to instantiate EvaluationRequest robustly
try:
request = EvaluationRequest(
questions=questions,
ground_truths=ground_truths,
model_responses=model_responses,
metrics=[MetricType(m) for m in metrics],
api_provider=provider_enum,
judge_model=judge_model,
max_concurrent=max_concurrent
)
except Exception:
# Fallback to simple namespace-like object if model signature differs
class SimpleRequest:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
request = SimpleRequest(
questions=questions,
ground_truths=ground_truths,
model_responses=model_responses,
metrics=metrics,
api_provider=provider_enum,
judge_model=judge_model,
max_concurrent=max_concurrent
)
return request
def parse_json_file(uploaded_file):
"""Parse JSON file with different possible structures"""
try:
# Read and parse the file
content = uploaded_file.getvalue()
if isinstance(content, bytes):
content = content.decode('utf-8')
data = json.loads(content)
questions_list = []
truths_list = []
responses_list = []
contexts_list = []
# Handle different JSON structures
if isinstance(data, dict):
# Check if it's the comprehensive_test_data.json format
if "questions" in data and "ground_truths" in data:
questions_list = data.get("questions", [])
truths_list = data.get("ground_truths", [])
responses_list = data.get("model_responses", [])
contexts_list = data.get("contexts", [])
else:
# Try to extract from a single object
item = {k.lower(): v for k, v in data.items()}
q = item.get("question") or item.get("prompt") or item.get("input")
gt = item.get("ground_truth") or item.get("groundtruth") or item.get("ground truth") or ""
resp = item.get("model_response") or item.get("response") or item.get("answer") or ""
ctx = item.get("context") or item.get("contexts") or ""
if q:
questions_list.append(str(q))
truths_list.append(str(gt))
responses_list.append(str(resp))
contexts_list.append(str(ctx))
elif isinstance(data, list):
# Handle list of objects
for item in data:
if isinstance(item, dict):
item_lc = {k.lower(): v for k, v in item.items()}
q = item_lc.get("question") or item_lc.get("prompt") or item_lc.get("input")
gt = item_lc.get("ground_truth") or item_lc.get("groundtruth") or item_lc.get("ground truth") or ""
resp = item_lc.get("model_response") or item_lc.get("response") or item.lc.get("answer") or ""
ctx = item_lc.get("context") or item_lc.get("contexts") or ""
if q:
questions_list.append(str(q))
truths_list.append(str(gt))
responses_list.append(str(resp))
contexts_list.append(str(ctx))
return questions_list, truths_list, responses_list, contexts_list
except Exception as e:
st.error(f"Error parsing JSON file: {e}")
return [], [], [], []
def main():
st.title("π€ LMVal: Multi-Metric LLM Evaluation")
st.markdown("Advanced RAG pipeline evaluation using LangGraph and Groq/OpenAI")
# Sidebar
with st.sidebar:
st.header("βοΈ Configuration")
api_provider = st.radio(
"API Provider",
options=["groq", "openai"],
index=0,
horizontal=True
)
if api_provider == "groq":
api_key = st.text_input(
"Groq API Key",
type="password",
value=os.getenv("GROQ_API_KEY", ""),
help="Get from https://console.groq.com/"
)
if api_key:
os.environ["GROQ_API_KEY"] = api_key
judge_model = st.selectbox(
"Judge Model",
options=settings.AVAILABLE_GROQ_MODELS,
index=0
)
else:
api_key = st.text_input(
"OpenAI API Key",
type="password",
value=os.getenv("OPENAI_API_KEY", ""),
help="Get from https://platform.openai.com/"
)
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
judge_model = st.selectbox(
"Judge Model",
options=settings.AVAILABLE_OPENAI_MODELS,
index=0
)
selected_metrics = st.multiselect(
"Evaluation Metrics",
options=[m.value for m in MetricType],
default=["accuracy", "faithfulness", "relevance"],
help="Select metrics to evaluate. Some metrics may require additional context."
)
max_concurrent = st.slider(
"Max Concurrent Evaluations",
min_value=1,
max_value=10,
value=3,
help="Higher values may cause rate limiting"
)
st.subheader("πΎ Cache Settings")
if st.button("Clear Cache", use_container_width=True):
clear_cache()
st.success("Cache cleared!")
cache_stats = get_cache_stats()
st.caption(f"Cache: {cache_stats['count']} items, {cache_stats['size'] / 1024 / 1024:.1f} MB")
st.subheader("βΉοΈ About")
st.info("""
This platform evaluates LLM responses using multiple metrics:
- **Accuracy**: Comparison with ground truth (higher is better)
- **Faithfulness**: Checks for hallucinations (higher is better)
- **Relevance**: Response relevance to question (higher is better)
- **Toxicity**: Detects harmful content (lower is better)
- **Context Precision/Recall**: For RAG systems (higher is better)
""")
tab1, tab2, tab3 = st.tabs(["πββοΈ Evaluate", "π Results", "π History"])
# Evaluate tab
with tab1:
st.header("Run Evaluation")
input_method = st.radio(
"Input Method",
["Manual Input", "Upload JSON"],
horizontal=True
)
questions_list = []
truths_list = []
responses_list = []
contexts_list = []
if input_method == "Manual Input":
col1, col2 = st.columns(2)
with col1:
questions = st.text_area(
"Questions (one per line)",
height=150,
placeholder="What is the capital of France?\nHow does photosynthesis work?",
help="Enter each question on a new line"
)
with col2:
ground_truths = st.text_area(
"Ground Truths (one per line)",
height=150,
placeholder="Paris\nPhotosynthesis converts sunlight to energy.",
help="Enter ground truth for each question"
)
model_responses = st.text_area(
"Model Responses (one per line)",
height=150,
placeholder="Paris is the capital.\nPhotosynthesis uses sunlight.",
help="Enter model response for each question"
)
if any(metric in selected_metrics for metric in ["context_precision", "context_recall"]):
contexts = st.text_area(
"Contexts (one per line, optional)",
height=100,
placeholder="France is a country...\nPlants use sunlight...",
help="Required for context precision/recall metrics"
)
contexts_list = [c.strip() for c in contexts.split('\n') if c.strip()]
questions_list = [q.strip() for q in questions.split('\n') if q.strip()]
truths_list = [g.strip() for g in ground_truths.split('\n') if g.strip()]
responses_list = [r.strip() for r in model_responses.split('\n') if r.strip()]
else: # Upload JSON
uploaded_file = st.file_uploader("Upload JSON file", type=["json"],
help="Upload a JSON file with questions, ground_truths, model_responses, and optionally contexts")
if uploaded_file is not None:
try:
questions_list, truths_list, responses_list, contexts_list = parse_json_file(uploaded_file)
if questions_list:
st.success(f"Loaded {len(questions_list)} items from JSON")
# Show preview
with st.expander("Preview loaded data"):
preview_data = {
"questions": questions_list[:3] + ["..."] if len(questions_list) > 3 else questions_list,
"ground_truths": truths_list[:3] + ["..."] if len(truths_list) > 3 else truths_list,
"model_responses": responses_list[:3] + ["..."] if responses_list and len(responses_list) > 3 else responses_list,
"contexts": contexts_list[:3] + ["..."] if contexts_list and len(contexts_list) > 3 else contexts_list
}
st.json(preview_data)
else:
st.warning("No valid data found in the JSON file")
except Exception as e:
st.error(f"Error processing JSON file: {e}")
# Run evaluation button
run_button = st.button("βΆοΈ Run Evaluation", use_container_width=True,
disabled=st.session_state.evaluation_in_progress)
if run_button:
if not questions_list:
st.error("No questions provided.")
elif len(questions_list) != len(truths_list):
st.error("Number of questions and ground truths must match.")
elif responses_list and len(questions_list) != len(responses_list):
st.error("Number of questions and responses must match.")
elif contexts_list and len(questions_list) != len(contexts_list):
st.error("Number of questions and contexts must match for context-based metrics.")
else:
# Ensure we have responses (even if empty)
if not responses_list:
responses_list = [""] * len(questions_list)
# Ensure we have contexts (even if empty)
if not contexts_list:
contexts_list = [""] * len(questions_list)
# Build request object
request = build_request_object(
questions=questions_list,
ground_truths=truths_list,
model_responses=responses_list,
contexts=contexts_list,
metrics=selected_metrics,
provider=api_provider,
judge_model=judge_model,
max_concurrent=max_concurrent
)
# Store evaluation parameters
st.session_state.evaluation_params = {
"metrics": selected_metrics,
"provider": api_provider,
"judge_model": judge_model,
"max_concurrent": max_concurrent,
"num_items": len(questions_list),
"timestamp": datetime.now(timezone.utc).isoformat()
}
# Run evaluation
st.session_state.evaluation_in_progress = True
with st.spinner("Running evaluation..."):
results = run_evaluation_sync(request)
st.session_state.evaluation_in_progress = False
if results:
st.success("Evaluation completed successfully!")
st.session_state.evaluation_results = results
# Add to history
history_item = {
"id": len(st.session_state.evaluation_history) + 1,
"timestamp": datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
"params": st.session_state.evaluation_params,
"summary": {
"overall_score": getattr(results, "overall_score", None),
"total_questions": getattr(results, "total_questions", None)
},
"results": results
}
st.session_state.evaluation_history.insert(0, history_item)
st.session_state.show_results = True
st.session_state.active_tab = "Results"
st.rerun()
else:
st.error("Evaluation failed. Please check your API keys and try again.")
# Show current configuration
if questions_list:
st.info(f"Ready to evaluate {len(questions_list)} questions with {len(selected_metrics)} metrics using {judge_model}")
# Results tab
with tab2:
st.header("Results")
if st.session_state.show_results and st.session_state.evaluation_results:
display_results(st.session_state.evaluation_results)
else:
st.info("No results to display. Run an evaluation from the Evaluate tab or load from History.")
# History tab
with tab3:
st.header("Evaluation History")
if not st.session_state.evaluation_history:
st.info("No evaluation history yet. Run an evaluation first!")
else:
# Create a table for history
history_data = []
for item in st.session_state.evaluation_history:
history_data.append({
"ID": item["id"],
"Timestamp": item["timestamp"],
"Questions": item["params"].get("num_items", "N/A"),
"Model": item["params"].get("judge_model", "N/A"),
"Provider": item["params"].get("provider", "N/A"),
"Overall Score": f"{item['summary'].get('overall_score', 0):.1f}%" if item['summary'].get('overall_score') is not None else "N/A"
})
# Display history as a table
history_df = pd.DataFrame(history_data)
st.dataframe(
history_df,
use_container_width=True,
hide_index=True,
column_config={
"ID": st.column_config.NumberColumn("Run #", width="small"),
"Timestamp": st.column_config.DatetimeColumn("Time", width="medium"),
"Questions": st.column_config.NumberColumn("Questions", width="small"),
"Model": st.column_config.TextColumn("Model", width="medium"),
"Provider": st.column_config.TextColumn("Provider", width="small"),
"Overall Score": st.column_config.TextColumn("Score", width="small")
}
)
# Action buttons for each history item
selected_run = st.selectbox(
"Select a run to view or manage:",
options=[f"Run #{item['id']} - {item['timestamp']}" for item in st.session_state.evaluation_history],
index=0
)
# Extract run ID from selection
run_id = int(selected_run.split("#")[1].split(" ")[0]) if selected_run else None
if run_id:
col1, col2, col3 = st.columns(3)
with col1:
if st.button("π View Results", use_container_width=True):
# Find the selected run
selected_item = next((item for item in st.session_state.evaluation_history if item["id"] == run_id), None)
if selected_item:
st.session_state.evaluation_results = selected_item["results"]
st.session_state.show_results = True
st.session_state.active_tab = "Results"
st.rerun()
with col2:
if st.button("π₯ Export Results", use_container_width=True):
selected_item = next((item for item in st.session_state.evaluation_history if item["id"] == run_id), None)
if selected_item and hasattr(selected_item["results"], 'model_dump_json'):
results_json = selected_item["results"].model_dump_json()
st.download_button(
"Download JSON",
data=results_json,
file_name=f"evaluation_run_{run_id}.json",
mime="application/json",
use_container_width=True
)
with col3:
if st.button("ποΈ Delete Run", use_container_width=True):
st.session_state.evaluation_history = [
item for item in st.session_state.evaluation_history if item["id"] != run_id
]
st.success(f"Deleted run #{run_id}")
st.rerun()
# Clear all history button
if st.button("Clear All History", use_container_width=True, type="secondary"):
st.session_state.evaluation_history = []
st.success("All history cleared")
st.rerun()
if __name__ == "__main__":
main() |