ks-version-1-1 / backend /autocomplete.py
NIKKI77's picture
Deploy: GPU-ready HF Space (Docker)
903b444
# Autocomplete backend β€” builds, loads, and queries bigram index
import os
import pickle
from collections import Counter
# Paths: where bigrams.pkl is stored
BIGRAMS_PATH = os.path.join(os.path.dirname(__file__), "../data/bigrams.pkl")
# Global cache (lazy-loaded bigram counts)
_bigram_counts = None
# Build bigrams index from subtitle blocks
def build_bigrams_index(blocks: list[dict], out_path: str = BIGRAMS_PATH, min_count: int = 2):
"""
Build a bigram frequency file from preprocessed blocks and save to disk.
We use a simple whitespace tokenizer and generate bigrams via zip().
"""
all_text = " ".join((b.get("text") or "").lower() for b in blocks)
tokens = all_text.split()
bigrams = [" ".join(pair) for pair in zip(tokens, tokens[1:])]
counts = Counter(bigrams)
if min_count > 1:
counts = Counter({k: v for k, v in counts.items() if v >= min_count})
os.makedirs(os.path.dirname(out_path), exist_ok=True)
with open(out_path, "wb") as f:
pickle.dump(counts, f)
# Lazy loader for bigrams.pkl into memory
def load_bigrams():
"""Load precomputed bigrams from disk."""
global _bigram_counts
if _bigram_counts is None:
if os.path.exists(BIGRAMS_PATH):
with open(BIGRAMS_PATH, "rb") as f:
_bigram_counts = pickle.load(f)
else:
_bigram_counts = Counter()
# Suggestion function
def get_suggestions(term: str):
"""Return top 10 bigram suggestions starting with the given term."""
if not term or not term.strip():
return []
load_bigrams()
term = term.lower().strip()
matches = [bg for bg in _bigram_counts if bg.startswith(term)]
matches.sort(key=lambda x: (-_bigram_counts[x], x))
return matches[:10]