#!/usr/bin/env python # -*- coding: utf-8 -*- """ Basic object detection example using Rex Omni """ import torch from PIL import Image from rex_omni import RexOmniVisualize, RexOmniWrapper def main(): # Model path - replace with your actual model path model_path = "IDEA-Research/Rex-Omni" # Create wrapper with custom parameters rex_model = RexOmniWrapper( model_path=model_path, backend="transformers", # or "vllm" for faster inference max_tokens=4096, temperature=0.0, top_p=0.05, top_k=1, repetition_penalty=1.05, ) # Load image image_path = "tutorials/detection_example/test_images/layout.jpg" # Replace with your image path image = Image.open(image_path).convert("RGB") # Object detection categories = ["header", "headline", "paragraph", "page number", "figure", "section"] results = rex_model.inference(images=image, task="detection", categories=categories) # Print results result = results[0] if result["success"]: predictions = result["extracted_predictions"] vis_image = RexOmniVisualize( image=image, predictions=predictions, font_size=20, draw_width=5, show_labels=True, ) # Save visualization output_path = "tutorials/detection_example/test_images/layout_visualize.jpg" vis_image.save(output_path) print(f"Visualization saved to: {output_path}") else: print(f"Inference failed: {result['error']}") if __name__ == "__main__": main()