Rex-Omni / tutorials /pointing_example.py
Mountchicken's picture
Upload 35 files
ced4fcf verified
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Basic object detection example using Rex Omni
"""
import torch
from PIL import Image
from rex_omni import RexOmniWrapper, visualize_predictions
def main():
# Model path - replace with your actual model path
model_path = "IDEA-Research/Rex-Omni"
# Create wrapper with custom parameters
rex_model = RexOmniWrapper(
model_path=model_path,
backend="transformers", # or "vllm" for faster inference
max_tokens=2048,
temperature=0.0,
top_p=0.05,
top_k=1,
repetition_penalty=1.05,
)
# Load image
image_path = "examples/test_images/pigeon.jpeg" # Replace with your image path
image = Image.open(image_path).convert("RGB")
# Object detection
categories = ["pigeons"]
results = rex_model.inference(images=image, task="pointing", categories=categories)
# Print results
result = results[0]
if result["success"]:
predictions = result["extracted_predictions"]
vis_image = visualize_predictions(
image=image,
predictions=predictions,
font_size=20,
draw_width=10,
show_labels=True,
)
# Save visualization
output_path = "examples/test_images/pigeon_visualize.jpg"
vis_image.save(output_path)
print(f"Visualization saved to: {output_path}")
else:
print(f"Inference failed: {result['error']}")
if __name__ == "__main__":
main()