Spaces:
Running
on
Zero
Running
on
Zero
File size: 33,439 Bytes
a44d7a3 f2be7dd e2e6048 a854eca e2e6048 63abb76 e2e6048 f2be7dd a44d7a3 e2e6048 a44d7a3 1c5536c a44d7a3 9695567 a44d7a3 1c5536c a44d7a3 e2e6048 a44d7a3 e2e6048 459f575 a44d7a3 a8932c9 e2e6048 a8932c9 a44d7a3 a8932c9 a44d7a3 a8932c9 e2e6048 a8932c9 a44d7a3 a8932c9 a44d7a3 a8932c9 a44d7a3 e2e6048 a44d7a3 1bd75ed a44d7a3 e2e6048 a44d7a3 e2e6048 a44d7a3 e2e6048 a44d7a3 e2e6048 a44d7a3 e2e6048 a44d7a3 e2e6048 a44d7a3 e2e6048 a44d7a3 e2e6048 a44d7a3 63abb76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import argparse
import json
import os
import spaces
os.system(
"pip install torch==2.4.0 torchvision==0.18.0 --index-url https://download.pytorch.org/whl/cu124"
)
os.system("pip install gradio_bbox_annotator")
import subprocess
subprocess.run(
"pip install flash-attn==2.7.4.post1 --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
import re
import sys
import threading
from typing import Any, Dict, List
import gradio as gr
import numpy as np
from gradio_bbox_annotator import BBoxAnnotator
from PIL import Image
from rex_omni import RexOmniVisualize, RexOmniWrapper, TaskType
from rex_omni.tasks import KEYPOINT_CONFIGS, TASK_CONFIGS, get_task_config
def parse_args():
parser = argparse.ArgumentParser(description="Rex Omni Gradio Demo")
parser.add_argument(
"--model_path",
default="IDEA-Research/Rex-Omni",
help="Model path or HuggingFace repo ID",
)
parser.add_argument(
"--backend",
type=str,
default="transformers",
choices=["transformers", "vllm"],
help="Backend to use for inference",
)
parser.add_argument("--temperature", type=float, default=0.0)
parser.add_argument("--top_p", type=float, default=0.05)
parser.add_argument("--top_k", type=int, default=1)
parser.add_argument("--max_tokens", type=int, default=2048)
parser.add_argument("--repetition_penalty", type=float, default=1.05)
parser.add_argument("--min_pixels", type=int, default=16 * 28 * 28)
parser.add_argument("--max_pixels", type=int, default=2560 * 28 * 28)
parser.add_argument("--server_name", type=str, default="0.0.0.0")
parser.add_argument("--server_port", type=int, default=7860)
args = parser.parse_args()
return args
# Task configurations with detailed descriptions
DEMO_TASK_CONFIGS = {
"Detection": {
"task_type": TaskType.DETECTION,
"description": "Detect objects and return bounding boxes",
"example_categories": "person",
"supports_visual_prompt": False,
"supports_ocr_config": False,
},
"Pointing": {
"task_type": TaskType.POINTING,
"description": "Point to objects and return point coordinates",
"example_categories": "person",
"supports_visual_prompt": False,
"supports_ocr_config": False,
},
"Visual Prompting": {
"task_type": TaskType.VISUAL_PROMPTING,
"description": "Ground visual examples to find similar objects",
"example_categories": "",
"supports_visual_prompt": True,
"supports_ocr_config": False,
},
"Keypoint": {
"task_type": TaskType.KEYPOINT,
"description": "Detect keypoints with skeleton visualization",
"example_categories": "person, hand, animal",
"supports_visual_prompt": False,
"supports_ocr_config": False,
},
"OCR": {
"task_type": None, # Will be determined by OCR config
"description": "Optical Character Recognition with customizable output format",
"example_categories": "text, word",
"supports_visual_prompt": False,
"supports_ocr_config": True,
},
}
# OCR configuration options
OCR_OUTPUT_FORMATS = {
"Box": {
"task_type": TaskType.OCR_BOX,
"description": "Detect text with bounding boxes",
},
"Polygon": {
"task_type": TaskType.OCR_POLYGON,
"description": "Detect text with polygon boundaries",
},
}
OCR_GRANULARITY_LEVELS = {
"Word Level": {"categories": "word", "description": "Detect individual words"},
"Text Line Level": {"categories": "text line", "description": "Detect text lines"},
}
# Example configurations
EXAMPLE_CONFIGS = [
{
"name": "Detection: Cafe Scene",
"image_path": "tutorials/detection_example/test_images/cafe.jpg",
"task": "Detection",
"categories": "man, woman, yellow flower, sofa, robot-shape light, blanket, microwave, laptop, cup, white chair, lamp",
"keypoint_type": "person",
"ocr_output_format": "Box",
"ocr_granularity": "Word Level",
"visual_prompt_boxes": None,
"description": "Detection",
},
{
"name": "Referring: Boys Playing",
"image_path": "tutorials/detection_example/test_images/boys.jpg",
"task": "Detection",
"categories": "boys holding microphone, boy playing piano, the four guitars on the wall",
"keypoint_type": "person",
"ocr_output_format": "Box",
"ocr_granularity": "Word Level",
"visual_prompt_boxes": None,
"description": "Referring",
},
{
"name": "GUI Grounding: Boys Playing",
"image_path": "tutorials/detection_example/test_images/gui.png",
"task": "Detection",
"categories": "more information of song 'Photograph'",
"keypoint_type": "person",
"ocr_output_format": "Box",
"ocr_granularity": "Word Level",
"visual_prompt_boxes": None,
"description": "GUI Grounding",
},
{
"name": "Object Pointing: Point to boxes",
"image_path": "tutorials/pointing_example/test_images/boxes.jpg",
"task": "Pointing",
"categories": "open boxes, closed boxes",
"keypoint_type": "person",
"ocr_output_format": "Box",
"ocr_granularity": "Word Level",
"visual_prompt_boxes": None,
"description": "Point to boxes in the image",
},
{
"name": "Affordance Pointing",
"image_path": "tutorials/pointing_example/test_images/cup.png",
"task": "Pointing",
"categories": "where I can hold the green cup",
"keypoint_type": "person",
"ocr_output_format": "Box",
"ocr_granularity": "Word Level",
"visual_prompt_boxes": None,
"description": "Affordance Pointing",
},
{
"name": "Keypoint: Person",
"image_path": "tutorials/keypointing_example/test_images/person.png",
"task": "Keypoint",
"categories": "person",
"keypoint_type": "person",
"ocr_output_format": "Box",
"ocr_granularity": "Word Level",
"visual_prompt_boxes": None,
"description": "Detect human keypoints and pose estimation",
},
{
"name": "Keypoint: Animal",
"image_path": "tutorials/keypointing_example/test_images/animal.png",
"task": "Keypoint",
"categories": "animal",
"keypoint_type": "animal",
"ocr_output_format": "Box",
"ocr_granularity": "Word Level",
"visual_prompt_boxes": None,
"description": "Detect animal keypoints and pose structure",
},
{
"name": "OCR: Box and Word",
"image_path": "tutorials/ocr_example/test_images/ocr.png",
"task": "OCR",
"categories": "text",
"keypoint_type": "person",
"ocr_output_format": "Box",
"ocr_granularity": "Word Level",
"visual_prompt_boxes": None,
"description": "OCR: Box and Word",
},
{
"name": "OCR: Box and Text Line",
"image_path": "tutorials/ocr_example/test_images/ocr.png",
"task": "OCR",
"categories": "text",
"keypoint_type": "person",
"ocr_output_format": "Box",
"ocr_granularity": "Text Line Level",
"visual_prompt_boxes": None,
"description": "OCR: Box and Text Line",
},
{
"name": "OCR: Polygon and Text Line",
"image_path": "tutorials/ocr_example/test_images/ocr.png",
"task": "OCR",
"categories": "text",
"keypoint_type": "person",
"ocr_output_format": "Polygon",
"ocr_granularity": "Text Line Level",
"visual_prompt_boxes": None,
"description": "OCR: Polygon and Text Line",
},
{
"name": "Visual Prompting: Pigeons",
"image_path": "tutorials/visual_prompting_example/test_images/pigeons.jpeg",
"task": "Visual Prompting",
"categories": "pigeon",
"keypoint_type": "person",
"ocr_output_format": "Box",
"ocr_granularity": "Word Level",
"visual_prompt_boxes": [[644, 1210, 842, 1361], [1180, 1066, 1227, 1160]],
"description": "Find similar pigeons using visual prompting examples",
},
]
def parse_visual_prompt(bbox_data) -> List[List[float]]:
"""Parse BBoxAnnotator output to bounding boxes"""
if bbox_data is None:
return []
try:
# BBoxAnnotator returns format: (image, boxes_list)
# where boxes_list contains [x, y, width, height] for each box
if isinstance(bbox_data, tuple) and len(bbox_data) >= 2:
boxes_list = bbox_data[1]
else:
boxes_list = bbox_data
if not boxes_list:
return []
# Convert from [x, y, width, height] to [x1, y1, x2, y2] format
boxes = []
for box in boxes_list:
if len(box) >= 4:
x1, y1, x2, y2 = box[:4]
boxes.append([x1, y1, x2, y2])
return boxes
except Exception as e:
print(f"Error parsing visual prompt: {e}")
return []
def convert_boxes_to_visual_prompt_format(
boxes: List[List[float]], image_width: int, image_height: int
) -> str:
"""Convert bounding boxes to visual prompt format for the model"""
if not boxes:
return ""
# Convert to normalized bins (0-999)
visual_prompts = []
for i, box in enumerate(boxes):
x0, y0, x1, y1 = box
# Normalize and convert to bins
x0_norm = max(0.0, min(1.0, x0 / image_width))
y0_norm = max(0.0, min(1.0, y0 / image_height))
x1_norm = max(0.0, min(1.0, x1 / image_width))
y1_norm = max(0.0, min(1.0, y1 / image_height))
x0_bin = int(x0_norm * 999)
y0_bin = int(y0_norm * 999)
x1_bin = int(x1_norm * 999)
y1_bin = int(y1_norm * 999)
visual_prompt = f"<{x0_bin}><{y0_bin}><{x1_bin}><{y1_bin}>"
visual_prompts.append(visual_prompt)
return ", ".join(visual_prompts)
def get_task_prompt(
task_name: str,
categories: str,
keypoint_type: str = "",
visual_prompt_boxes: List = None,
image_width: int = 0,
image_height: int = 0,
ocr_output_format: str = "Box",
ocr_granularity: str = "Word Level",
) -> str:
"""Generate the actual prompt that will be sent to the model"""
if task_name not in DEMO_TASK_CONFIGS:
return "Invalid task selected."
demo_config = DEMO_TASK_CONFIGS[task_name]
if task_name == "Visual Prompting":
task_config = get_task_config(TaskType.VISUAL_PROMPTING)
if visual_prompt_boxes and len(visual_prompt_boxes) > 0:
visual_prompt_str = convert_boxes_to_visual_prompt_format(
visual_prompt_boxes, image_width, image_height
)
return task_config.prompt_template.replace(
"{visual_prompt}", visual_prompt_str
)
else:
return "Please draw bounding boxes on the image to provide visual examples."
elif task_name == "Keypoint":
task_config = get_task_config(TaskType.KEYPOINT)
if keypoint_type and keypoint_type in KEYPOINT_CONFIGS:
keypoints_list = KEYPOINT_CONFIGS[keypoint_type]
keypoints_str = ", ".join(keypoints_list)
prompt = task_config.prompt_template.replace("{categories}", keypoint_type)
prompt = prompt.replace("{keypoints}", keypoints_str)
return prompt
else:
return "Please select a keypoint type first."
elif task_name == "OCR":
# Get OCR task type based on output format
ocr_task_type = OCR_OUTPUT_FORMATS[ocr_output_format]["task_type"]
task_config = get_task_config(ocr_task_type)
# Get categories based on granularity level
ocr_categories = OCR_GRANULARITY_LEVELS[ocr_granularity]["categories"]
# Replace categories in prompt template
return task_config.prompt_template.replace("{categories}", ocr_categories)
else:
# For other tasks, use the task config from tasks.py
task_type = demo_config["task_type"]
task_config = get_task_config(task_type)
# Replace {categories} placeholder
if categories.strip():
return task_config.prompt_template.replace(
"{categories}", categories.strip()
)
else:
return task_config.prompt_template.replace("{categories}", "objects")
@spaces.GPU
def run_inference(
image,
task_selection,
categories,
keypoint_type,
visual_prompt_data,
ocr_output_format,
ocr_granularity,
font_size,
draw_width,
show_labels,
custom_color,
):
"""Run inference using Rex Omni"""
if image is None:
return None, "Please upload an image first."
# Convert numpy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image_width, image_height = image.size
# Parse visual prompts if needed
visual_prompt_boxes = []
if task_selection == "Visual Prompting":
# Check if we have predefined visual prompt boxes from examples
if hasattr(image, "_example_visual_prompts"):
visual_prompt_boxes = image._example_visual_prompts
elif visual_prompt_data is not None:
visual_prompt_boxes = parse_visual_prompt(visual_prompt_data)
# Determine task type and categories based on task selection
if task_selection == "OCR":
# For OCR, use the selected output format to determine task type
task_type = OCR_OUTPUT_FORMATS[ocr_output_format]["task_type"]
task_key = task_type.value
# Use granularity level to determine categories
categories_list = [OCR_GRANULARITY_LEVELS[ocr_granularity]["categories"]]
elif task_selection == "Visual Prompting":
# For visual prompting, we don't need explicit categories
task_key = "visual_prompting"
categories_list = ["object"]
# Check if visual prompt boxes are provided
if not visual_prompt_boxes:
return (
None,
"Please draw bounding boxes on the image to provide visual examples for Visual Prompting task.",
)
elif task_selection == "Keypoint":
task_key = "keypoint"
categories_list = [keypoint_type] if keypoint_type else ["person"]
else:
# For other tasks, get task type from demo config
demo_config = DEMO_TASK_CONFIGS[task_selection]
task_type = demo_config["task_type"]
task_key = task_type.value
# Split categories by comma and clean up
categories_list = [cat.strip() for cat in categories.split(",") if cat.strip()]
if not categories_list:
categories_list = ["object"]
# Run inference
if task_selection == "Visual Prompting":
results = rex_model.inference(
images=image,
task=task_key,
categories=categories_list,
visual_prompt_boxes=visual_prompt_boxes,
)
elif task_selection == "Keypoint":
results = rex_model.inference(
images=image,
task=task_key,
categories=categories_list,
keypoint_type=keypoint_type if keypoint_type else "person",
)
else:
results = rex_model.inference(
images=image, task=task_key, categories=categories_list
)
result = results[0]
# Check if inference was successful
if not result.get("success", False):
error_msg = result.get("error", "Unknown error occurred during inference")
return None, f"Inference failed: {error_msg}"
# Get predictions and raw output
predictions = result["extracted_predictions"]
raw_output = result["raw_output"]
# Create visualization
try:
vis_image = RexOmniVisualize(
image=image,
predictions=predictions,
font_size=font_size,
draw_width=draw_width,
show_labels=show_labels,
)
return vis_image, raw_output
except Exception as e:
return image, f"Visualization failed: {str(e)}\n\nRaw output:\n{raw_output}"
def update_interface(task_selection):
"""Update interface based on task selection"""
config = DEMO_TASK_CONFIGS.get(task_selection, {})
if task_selection == "Visual Prompting":
return (
gr.update(visible=False), # categories
gr.update(visible=False), # keypoint_type
gr.update(visible=True), # visual_prompt_tab
gr.update(visible=False), # ocr_config_group
gr.update(value=config.get("description", "")), # task_description
)
elif task_selection == "Keypoint":
return (
gr.update(visible=False), # categories
gr.update(visible=True), # keypoint_type
gr.update(visible=False), # visual_prompt_tab
gr.update(visible=False), # ocr_config_group
gr.update(value=config.get("description", "")), # task_description
)
elif task_selection == "OCR":
return (
gr.update(visible=False), # categories
gr.update(visible=False), # keypoint_type
gr.update(visible=False), # visual_prompt_tab
gr.update(visible=True), # ocr_config_group
gr.update(value=config.get("description", "")), # task_description
)
else:
return (
gr.update(
visible=True, placeholder=config.get("example_categories", "")
), # categories
gr.update(visible=False), # keypoint_type
gr.update(visible=False), # visual_prompt_tab
gr.update(visible=False), # ocr_config_group
gr.update(value=config.get("description", "")), # task_description
)
def load_example_image(image_path, visual_prompt_boxes=None):
"""Load example image from tutorials directory"""
if image_path is None:
return None
try:
import os
from PIL import Image
# Construct full path
full_path = os.path.join(os.path.dirname(__file__), image_path)
if os.path.exists(full_path):
image = Image.open(full_path).convert("RGB")
# Attach visual prompt boxes if provided (for Visual Prompting examples)
if visual_prompt_boxes:
image._example_visual_prompts = visual_prompt_boxes
return image
else:
print(f"Warning: Example image not found at {full_path}")
return None
except Exception as e:
print(f"Error loading example image: {e}")
return None
def prepare_gallery_data():
"""Prepare gallery data for examples"""
gallery_images = []
gallery_captions = []
for config in EXAMPLE_CONFIGS:
# Load example image
image = load_example_image(config["image_path"], config["visual_prompt_boxes"])
if image:
gallery_images.append(image)
gallery_captions.append(f"{config['name']}\n{config['description']}")
return gallery_images, gallery_captions
def update_example_selection(selected_index):
"""Update all interface elements based on gallery selection"""
if selected_index is None or selected_index >= len(EXAMPLE_CONFIGS):
return [gr.update() for _ in range(7)] # Return no updates if invalid selection
config = EXAMPLE_CONFIGS[selected_index]
# Load example image if available
example_image = None
if config["image_path"]:
example_image = load_example_image(
config["image_path"], config["visual_prompt_boxes"]
)
return (
example_image, # input_image
config["task"], # task_selection
config["categories"], # categories
config["keypoint_type"], # keypoint_type
config["ocr_output_format"], # ocr_output_format
config["ocr_granularity"], # ocr_granularity
gr.update(
value=DEMO_TASK_CONFIGS[config["task"]]["description"]
), # task_description
)
def update_prompt_preview(
task_selection,
categories,
keypoint_type,
visual_prompt_data,
ocr_output_format,
ocr_granularity,
):
"""Update the prompt preview"""
if visual_prompt_data is None:
visual_prompt_data = {}
# Parse visual prompts
visual_prompt_boxes = []
if visual_prompt_data is not None:
visual_prompt_boxes = parse_visual_prompt(visual_prompt_data)
# Generate prompt preview
prompt = get_task_prompt(
task_selection,
categories,
keypoint_type,
visual_prompt_boxes,
800, # dummy image dimensions for preview
600,
ocr_output_format=ocr_output_format,
ocr_granularity=ocr_granularity,
)
return prompt
def create_demo():
"""Create the Gradio demo interface"""
with gr.Blocks(
theme=gr.themes.Soft(primary_hue="blue"),
title="Rex Omni Demo",
css="""
.gradio-container {
max-width: 1400px !important;
}
.prompt-preview {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 0.375rem;
padding: 0.75rem;
font-family: 'Courier New', monospace;
font-size: 0.875rem;
}
.preserve-aspect-ratio img {
object-fit: contain !important;
max-height: 400px !important;
width: auto !important;
}
.preserve-aspect-ratio canvas {
object-fit: contain !important;
max-height: 400px !important;
width: auto !important;
}
""",
) as demo:
gr.Markdown("# Rex Omni: Detect Anything Demo")
gr.Markdown("Upload an image and select a task to see Rex Omni in action!")
with gr.Row():
# Left Column - Input Controls
with gr.Column(scale=1):
gr.Markdown("## π Task Configuration")
# Task Selection
task_selection = gr.Dropdown(
label="Select Task",
choices=list(DEMO_TASK_CONFIGS.keys()),
value="Detection",
info="Choose the vision task to perform",
)
# Task Description
task_description = gr.Textbox(
label="Task Description",
value=DEMO_TASK_CONFIGS["Detection"]["description"],
interactive=False,
lines=2,
)
# Text Prompt Section
with gr.Group():
gr.Markdown("### π¬ Text Prompt Configuration")
categories = gr.Textbox(
label="Categories",
value="person, car, dog",
placeholder="person, car, dog",
info="Enter object categories separated by commas",
visible=True,
)
keypoint_type = gr.Dropdown(
label="Keypoint Type",
choices=list(KEYPOINT_CONFIGS.keys()),
value="person",
visible=False,
info="Select the type of keypoints to detect",
)
# OCR Configuration Section
ocr_config_group = gr.Group(visible=False)
with ocr_config_group:
gr.Markdown("### π OCR Configuration")
ocr_output_format = gr.Radio(
label="Output Format",
choices=list(OCR_OUTPUT_FORMATS.keys()),
value="Box",
info="Choose between bounding box or polygon output format",
)
ocr_granularity = gr.Radio(
label="Granularity Level",
choices=list(OCR_GRANULARITY_LEVELS.keys()),
value="Word Level",
info="Choose between word-level or text-line-level detection",
)
# Visual Prompt Section
visual_prompt_tab = gr.Group(visible=False)
with visual_prompt_tab:
gr.Markdown("### π― Visual Prompt Configuration")
gr.Markdown(
"Select the pen tool and draw one or multiple boxes on the image. "
)
# Prompt Preview
gr.Markdown("### π Generated Prompt Preview")
prompt_preview = gr.Textbox(
label="Actual Prompt",
value="Detect person, car, dog.",
interactive=False,
lines=3,
elem_classes=["prompt-preview"],
)
# Visualization Controls
with gr.Accordion("π¨ Visualization Settings", open=False):
font_size = gr.Slider(
label="Font Size", value=20, minimum=10, maximum=50, step=1
)
draw_width = gr.Slider(
label="Line Width", value=5, minimum=1, maximum=20, step=1
)
show_labels = gr.Checkbox(label="Show Labels", value=True)
custom_color = gr.Textbox(
label="Custom Colors (Hex)",
placeholder="#FF0000,#00FF00,#0000FF",
info="Comma-separated hex colors for different categories",
)
# Right Column - Image and Results
with gr.Column(scale=2):
with gr.Row():
# Input Image
with gr.Column():
input_image = gr.Image(
label="π· Input Image", type="numpy", height=400
)
# Visual Prompt Interface (only visible for Visual Prompting task)
visual_prompter = BBoxAnnotator(
label="π― Visual Prompt Interface",
categories="D",
visible=False,
elem_classes=["preserve-aspect-ratio"],
)
# Output Visualization
with gr.Column():
output_image = gr.Image(
label="π¨ Visualization Result", height=400
)
# Run Button
run_button = gr.Button("π Run Inference", variant="primary", size="lg")
# Model Output
model_output = gr.Textbox(
label="π€ Model Raw Output",
lines=15,
max_lines=20,
show_copy_button=True,
)
# Example Gallery Section
with gr.Row():
gr.Markdown("## πΌοΈ Example Gallery")
with gr.Row():
gallery_images, gallery_captions = prepare_gallery_data()
example_gallery = gr.Gallery(
value=list(zip(gallery_images, gallery_captions)),
label="Click on an example to load it",
show_label=True,
elem_id="example_gallery",
columns=4,
rows=2,
height="auto",
allow_preview=True,
)
# Event Handlers
# Update interface when gallery example is selected
def handle_gallery_select(evt: gr.SelectData):
return update_example_selection(evt.index)
example_gallery.select(
fn=handle_gallery_select,
outputs=[
input_image,
task_selection,
categories,
keypoint_type,
ocr_output_format,
ocr_granularity,
task_description,
],
)
# Update interface when task changes
task_selection.change(
fn=update_interface,
inputs=[task_selection],
outputs=[
categories,
keypoint_type,
visual_prompt_tab,
ocr_config_group,
task_description,
],
)
# Update prompt preview when any input changes
for component in [
task_selection,
categories,
keypoint_type,
ocr_output_format,
ocr_granularity,
]:
component.change(
fn=update_prompt_preview,
inputs=[
task_selection,
categories,
keypoint_type,
visual_prompter,
ocr_output_format,
ocr_granularity,
],
outputs=[prompt_preview],
)
# Show/hide visual prompter based on task
def toggle_visual_prompter(task_selection):
if task_selection == "Visual Prompting":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
task_selection.change(
fn=toggle_visual_prompter,
inputs=[task_selection],
outputs=[input_image, visual_prompter],
)
# Run inference with dynamic image selection
def run_inference_wrapper(
input_image,
visual_prompter_data,
task_selection,
categories,
keypoint_type,
ocr_output_format,
ocr_granularity,
font_size,
draw_width,
show_labels,
custom_color,
):
# For Visual Prompting task, extract image from BBoxAnnotator data
if task_selection == "Visual Prompting":
if (
visual_prompter_data is None
or not isinstance(visual_prompter_data, tuple)
or len(visual_prompter_data) < 1
):
return (
None,
"Please upload an image and draw bounding boxes in the Visual Prompt Interface for Visual Prompting task.",
)
# Extract image from BBoxAnnotator data (first element of the tuple)
image_to_use = visual_prompter_data[0]
# If image_to_use is a string (file path), convert to PIL Image
if isinstance(image_to_use, str):
try:
from PIL import Image
image_to_use = Image.open(image_to_use).convert("RGB")
except Exception as e:
return (
None,
f"Error loading image from path: {e}",
)
else:
image_to_use = input_image
return run_inference(
image_to_use,
task_selection,
categories,
keypoint_type,
visual_prompter_data,
ocr_output_format,
ocr_granularity,
font_size,
draw_width,
show_labels,
custom_color,
)
run_button.click(
fn=run_inference_wrapper,
inputs=[
input_image,
visual_prompter,
task_selection,
categories,
keypoint_type,
ocr_output_format,
ocr_granularity,
font_size,
draw_width,
show_labels,
custom_color,
],
outputs=[output_image, model_output],
)
return demo
if __name__ == "__main__":
args = parse_args()
print("π Initializing Rex Omni model...")
print(f"Model: {args.model_path}")
print(f"Backend: {args.backend}")
# Initialize Rex Omni model
rex_model = RexOmniWrapper(
model_path=args.model_path,
backend=args.backend,
max_tokens=args.max_tokens,
temperature=args.temperature,
top_p=args.top_p,
top_k=args.top_k,
repetition_penalty=args.repetition_penalty,
min_pixels=args.min_pixels,
max_pixels=args.max_pixels,
)
print("β
Model initialized successfully!")
# Create and launch demo
demo = create_demo()
print(f"π Launching demo at http://{args.server_name}:{args.server_port}")
demo.launch(
server_name=args.server_name,
server_port=args.server_port,
share=True,
debug=True,
)
|