Spaces:
Runtime error
Runtime error
Commit
·
38f03cc
1
Parent(s):
df48381
Refactor image generation in app.py to streamline processing and enhance performance
Browse files
app.py
CHANGED
|
@@ -1,19 +1,11 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
from diffusers import FluxPipeline, AutoencoderKL
|
| 3 |
-
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
| 4 |
-
import torch
|
| 5 |
-
|
| 6 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 7 |
-
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
| 8 |
-
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
|
| 9 |
-
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
| 10 |
-
|
| 11 |
import gradio as gr
|
|
|
|
| 12 |
from gradio_litmodel3d import LitModel3D
|
| 13 |
|
| 14 |
import os
|
| 15 |
os.environ['SPCONV_ALGO'] = 'native'
|
| 16 |
from typing import *
|
|
|
|
| 17 |
import numpy as np
|
| 18 |
import imageio
|
| 19 |
import uuid
|
|
@@ -23,9 +15,13 @@ from trellis.pipelines import TrellisImageTo3DPipeline
|
|
| 23 |
from trellis.representations import Gaussian, MeshExtractResult
|
| 24 |
from trellis.utils import render_utils, postprocessing_utils
|
| 25 |
from gradio_client import Client
|
|
|
|
| 26 |
|
| 27 |
llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
def generate_t2i_prompt(item_name):
|
| 30 |
llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
|
| 31 |
|
|
@@ -55,32 +51,19 @@ Focus on the item itself, ensuring it is fully described, and specify a plain, w
|
|
| 55 |
|
| 56 |
return object_t2i_prompt
|
| 57 |
|
| 58 |
-
@spaces.GPU(duration=
|
| 59 |
def generate_item_image(object_t2i_prompt):
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
prompt=object_t2i_prompt,
|
| 63 |
-
guidance_scale=3.5,
|
| 64 |
-
num_inference_steps=28,
|
| 65 |
-
width=1024,
|
| 66 |
-
height=1024,
|
| 67 |
-
generator=torch.Generator("cpu").manual_seed(0),
|
| 68 |
-
output_type="pil",
|
| 69 |
-
good_vae=good_vae,
|
| 70 |
-
):
|
| 71 |
-
yield trial_id, image
|
| 72 |
-
|
| 73 |
-
trial_id, processed_image = preprocess_image(image)
|
| 74 |
return trial_id, processed_image
|
| 75 |
|
| 76 |
-
|
| 77 |
MAX_SEED = np.iinfo(np.int32).max
|
| 78 |
TMP_DIR = "/tmp/Trellis-demo"
|
| 79 |
|
| 80 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 81 |
|
| 82 |
|
| 83 |
-
def
|
| 84 |
"""
|
| 85 |
Preprocess the input image.
|
| 86 |
|
|
@@ -265,7 +248,7 @@ with gr.Blocks(title="Game Items Generator") as demo:
|
|
| 265 |
for image in os.listdir("assets/example_image")
|
| 266 |
],
|
| 267 |
inputs=[image_prompt],
|
| 268 |
-
fn=
|
| 269 |
outputs=[trial_id, image_prompt],
|
| 270 |
run_on_click=True,
|
| 271 |
examples_per_page=64,
|
|
@@ -283,7 +266,7 @@ with gr.Blocks(title="Game Items Generator") as demo:
|
|
| 283 |
outputs=[trial_id, image_prompt],
|
| 284 |
)
|
| 285 |
image_prompt.upload(
|
| 286 |
-
|
| 287 |
inputs=[image_prompt],
|
| 288 |
outputs=[trial_id, image_prompt],
|
| 289 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
from gradio_litmodel3d import LitModel3D
|
| 4 |
|
| 5 |
import os
|
| 6 |
os.environ['SPCONV_ALGO'] = 'native'
|
| 7 |
from typing import *
|
| 8 |
+
import torch
|
| 9 |
import numpy as np
|
| 10 |
import imageio
|
| 11 |
import uuid
|
|
|
|
| 15 |
from trellis.representations import Gaussian, MeshExtractResult
|
| 16 |
from trellis.utils import render_utils, postprocessing_utils
|
| 17 |
from gradio_client import Client
|
| 18 |
+
from diffusers import FluxPipeline
|
| 19 |
|
| 20 |
llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
|
| 21 |
|
| 22 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to(device)
|
| 24 |
+
|
| 25 |
def generate_t2i_prompt(item_name):
|
| 26 |
llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
|
| 27 |
|
|
|
|
| 51 |
|
| 52 |
return object_t2i_prompt
|
| 53 |
|
| 54 |
+
@spaces.GPU(duration=100)
|
| 55 |
def generate_item_image(object_t2i_prompt):
|
| 56 |
+
image = pipe(prompt=object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024, generator=torch.Generator("cpu").manual_seed(0), output_type="pil").images[0]
|
| 57 |
+
trial_id, processed_image = preprocess_pil_image(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
return trial_id, processed_image
|
| 59 |
|
|
|
|
| 60 |
MAX_SEED = np.iinfo(np.int32).max
|
| 61 |
TMP_DIR = "/tmp/Trellis-demo"
|
| 62 |
|
| 63 |
os.makedirs(TMP_DIR, exist_ok=True)
|
| 64 |
|
| 65 |
|
| 66 |
+
def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
| 67 |
"""
|
| 68 |
Preprocess the input image.
|
| 69 |
|
|
|
|
| 248 |
for image in os.listdir("assets/example_image")
|
| 249 |
],
|
| 250 |
inputs=[image_prompt],
|
| 251 |
+
fn=preprocess_pil_image,
|
| 252 |
outputs=[trial_id, image_prompt],
|
| 253 |
run_on_click=True,
|
| 254 |
examples_per_page=64,
|
|
|
|
| 266 |
outputs=[trial_id, image_prompt],
|
| 267 |
)
|
| 268 |
image_prompt.upload(
|
| 269 |
+
preprocess_pil_image,
|
| 270 |
inputs=[image_prompt],
|
| 271 |
outputs=[trial_id, image_prompt],
|
| 272 |
)
|