Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,30 +2,6 @@ import gradio as gr
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import librosa
|
| 4 |
|
| 5 |
-
|
| 6 |
-
########################ASR model###############################
|
| 7 |
-
|
| 8 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 9 |
-
|
| 10 |
-
# load model and processor
|
| 11 |
-
processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
| 12 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
|
| 13 |
-
model.config.forced_decoder_ids = None
|
| 14 |
-
|
| 15 |
-
sample_rate = 16000
|
| 16 |
-
|
| 17 |
-
def ASR_model(audio, sr=16000):
|
| 18 |
-
DB_audio = audio
|
| 19 |
-
input_features = processor(audio, sampling_rate=sr, return_tensors="pt").input_features
|
| 20 |
-
# generate token ids
|
| 21 |
-
predicted_ids = model.generate(input_features)
|
| 22 |
-
# decode token ids to text
|
| 23 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
| 24 |
-
|
| 25 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 26 |
-
|
| 27 |
-
return transcription
|
| 28 |
-
|
| 29 |
########################LLama model###############################
|
| 30 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 31 |
|
|
@@ -69,6 +45,31 @@ def RallyRespone(chat_history, message):
|
|
| 69 |
res = t_chat[t_chat.rfind("Rally: "):]
|
| 70 |
return res
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
########################Gradio UI###############################
|
| 73 |
|
| 74 |
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
import librosa
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
########################LLama model###############################
|
| 6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
|
|
|
|
| 45 |
res = t_chat[t_chat.rfind("Rally: "):]
|
| 46 |
return res
|
| 47 |
|
| 48 |
+
########################ASR model###############################
|
| 49 |
+
|
| 50 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 51 |
+
|
| 52 |
+
# load model and processor
|
| 53 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
| 54 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
|
| 55 |
+
model.config.forced_decoder_ids = None
|
| 56 |
+
|
| 57 |
+
sample_rate = 16000
|
| 58 |
+
|
| 59 |
+
def ASR_model(audio, sr=16000):
|
| 60 |
+
DB_audio = audio
|
| 61 |
+
input_features = processor(audio, sampling_rate=sr, return_tensors="pt").input_features
|
| 62 |
+
# generate token ids
|
| 63 |
+
predicted_ids = model.generate(input_features)
|
| 64 |
+
# decode token ids to text
|
| 65 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
|
| 66 |
+
|
| 67 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 68 |
+
|
| 69 |
+
return transcription
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
########################Gradio UI###############################
|
| 74 |
|
| 75 |
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.
|