DataMiningProjectDemo / src /embedding.py
Metin's picture
Clean up
fdfe8da
import time
import pandas as pd
import torch
import torch.nn.functional as F
from tqdm import tqdm
from transformers import AutoModel, AutoTokenizer
class Embedder:
def __init__(self, path):
self.model_name_or_path = path
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
self.model = AutoModel.from_pretrained(
self.model_name_or_path, trust_remote_code=True
)
self.model.to(self.device)
def generate_embedding(self, text):
inputs = self.tokenizer(
text, max_length=8192, padding=True, truncation=True, return_tensors="pt"
)
inputs = {key: value.to(self.device) for key, value in inputs.items()}
with torch.no_grad():
outputs = self.model(**inputs)
dimension = 768
embeddings = outputs.last_hidden_state[:, 0][:dimension]
normalized_embeddings = F.normalize(embeddings, p=2, dim=1)
return normalized_embeddings.squeeze().cpu().numpy()