Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,16 +12,18 @@ import numpy as np
|
|
| 12 |
import spaces
|
| 13 |
|
| 14 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
| 15 |
|
| 16 |
def load_models(model_path="MeissonFlow/Meissonic",
|
| 17 |
transformer_path="MeissonFlow/Muddit"):
|
| 18 |
model = SymmetricTransformer2DModel.from_pretrained(
|
| 19 |
transformer_path,
|
| 20 |
subfolder="1024/transformer",
|
|
|
|
| 21 |
)
|
| 22 |
-
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae")
|
| 23 |
-
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder")
|
| 24 |
-
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer")
|
| 25 |
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
|
| 26 |
|
| 27 |
pipe = UnifiedPipeline(
|
|
@@ -65,7 +67,7 @@ def image_to_text(image, prompt, resolution=1024, steps=64, cfg=9.0):
|
|
| 65 |
width=resolution,
|
| 66 |
guidance_scale=cfg,
|
| 67 |
num_inference_steps=steps,
|
| 68 |
-
mask_token_embedding="
|
| 69 |
generator=torch.manual_seed(42),
|
| 70 |
)
|
| 71 |
|
|
@@ -87,7 +89,7 @@ def text_to_image(prompt, negative_prompt, num_images=1, resolution=1024, steps=
|
|
| 87 |
width=resolution,
|
| 88 |
guidance_scale=cfg,
|
| 89 |
num_inference_steps=steps,
|
| 90 |
-
mask_token_embedding="
|
| 91 |
generator=torch.manual_seed(42),
|
| 92 |
)
|
| 93 |
|
|
|
|
| 12 |
import spaces
|
| 13 |
|
| 14 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 15 |
+
dtype = torch.bfloat16
|
| 16 |
|
| 17 |
def load_models(model_path="MeissonFlow/Meissonic",
|
| 18 |
transformer_path="MeissonFlow/Muddit"):
|
| 19 |
model = SymmetricTransformer2DModel.from_pretrained(
|
| 20 |
transformer_path,
|
| 21 |
subfolder="1024/transformer",
|
| 22 |
+
torch_dtype=dtype)
|
| 23 |
)
|
| 24 |
+
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae",torch_dtype=dtype)
|
| 25 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path, subfolder="text_encoder",torch_dtype=dtype)
|
| 26 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer",torch_dtype=dtype)
|
| 27 |
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
|
| 28 |
|
| 29 |
pipe = UnifiedPipeline(
|
|
|
|
| 67 |
width=resolution,
|
| 68 |
guidance_scale=cfg,
|
| 69 |
num_inference_steps=steps,
|
| 70 |
+
mask_token_embedding="./mask_token_embedding.pth",
|
| 71 |
generator=torch.manual_seed(42),
|
| 72 |
)
|
| 73 |
|
|
|
|
| 89 |
width=resolution,
|
| 90 |
guidance_scale=cfg,
|
| 91 |
num_inference_steps=steps,
|
| 92 |
+
mask_token_embedding="./mask_token_embedding.pth",
|
| 93 |
generator=torch.manual_seed(42),
|
| 94 |
)
|
| 95 |
|