Spaces:
Runtime error
Runtime error
File size: 14,421 Bytes
d29a257 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import gradio as gr
import numpy as np
import wikipedia
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline
from sentence_transformers import SentenceTransformer
import faiss
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import time
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
# Global variables to store models and data
embedding_model = None
qa_pipeline = None
chunks = None
embeddings = None
index = None
document = None
def load_models():
"""Load and cache the ML models"""
global embedding_model, qa_pipeline
if embedding_model is None:
print("π€ Loading embedding model...")
embedding_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
print("π€ Loading QA model...")
qa_tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2")
qa_model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
qa_pipeline = pipeline("question-answering", model=qa_model, tokenizer=qa_tokenizer)
print("β
Models loaded successfully!")
return "β
Models are ready!"
def get_wikipedia_content(topic):
"""Fetch Wikipedia content"""
try:
page = wikipedia.page(topic)
return page.content, f"β
Successfully fetched '{topic}' article"
except wikipedia.exceptions.PageError:
return None, f"β Page '{topic}' not found. Please try a different topic."
except wikipedia.exceptions.DisambiguationError as e:
return None, f"β οΈ Ambiguous topic. Try one of these: {', '.join(e.options[:5])}"
def split_text(text, chunk_size=256, chunk_overlap=20):
"""Split text into overlapping chunks"""
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-mpnet-base-v2")
# Split into sentences first
sentences = text.split('. ')
chunks = []
current_chunk = ""
for sentence in sentences:
test_chunk = current_chunk + ". " + sentence if current_chunk else sentence
test_tokens = tokenizer.tokenize(test_chunk)
if len(test_tokens) > chunk_size:
if current_chunk:
chunks.append(current_chunk.strip())
# Add overlap
if chunk_overlap > 0 and chunks:
overlap_tokens = tokenizer.tokenize(current_chunk)
if len(overlap_tokens) > chunk_overlap:
overlap_start = len(overlap_tokens) - chunk_overlap
overlap_text = tokenizer.convert_tokens_to_string(overlap_tokens[overlap_start:])
current_chunk = overlap_text + ". " + sentence
else:
current_chunk = sentence
else:
current_chunk = sentence
else:
current_chunk = sentence
else:
current_chunk = test_chunk
if current_chunk.strip():
chunks.append(current_chunk.strip())
return chunks
def process_article(topic, chunk_size, chunk_overlap):
"""Process Wikipedia article into chunks and embeddings"""
global chunks, embeddings, index, document
if not topic.strip():
return "β οΈ Please enter a topic first!", None, ""
# Load models first
load_models()
# Fetch content
document, message = get_wikipedia_content(topic)
if document is None:
return message, None, ""
# Process text
chunks = split_text(document, int(chunk_size), int(chunk_overlap))
# Create embeddings
embeddings = embedding_model.encode(chunks)
# Build FAISS index
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings))
# Create summary stats
chunk_lengths = [len(chunk.split()) for chunk in chunks]
summary = f"""
π **Processing Summary:**
- **Total chunks**: {len(chunks)}
- **Embedding dimension**: {dimension}
- **Average chunk length**: {np.mean(chunk_lengths):.1f} words
- **Min/Max chunk length**: {min(chunk_lengths)}/{max(chunk_lengths)} words
- **Document length**: {len(document.split())} words
β
Ready for questions!
"""
return f"β
Successfully processed '{topic}' into {len(chunks)} chunks!", create_chunk_visualization(), summary
def create_chunk_visualization():
"""Create chunk length distribution plot"""
if chunks is None:
return None
chunk_lengths = [len(chunk.split()) for chunk in chunks]
fig = make_subplots(
rows=1, cols=2,
subplot_titles=("π Chunk Length Distribution", "π Statistical Summary"),
specs=[[{"type": "bar"}, {"type": "box"}]]
)
# Histogram
fig.add_trace(
go.Histogram(x=chunk_lengths, nbinsx=15, name="Distribution",
marker_color="skyblue", opacity=0.7),
row=1, col=1
)
# Box plot
fig.add_trace(
go.Box(y=chunk_lengths, name="Statistics",
marker_color="lightgreen", boxmean=True),
row=1, col=2
)
fig.update_layout(height=400, showlegend=False, title="π Chunk Analysis")
return fig
def answer_question(question, k_retrieval):
"""Answer question using RAG pipeline"""
global chunks, embeddings, index, qa_pipeline
if chunks is None or index is None:
return "β οΈ Please process an article first!", None, "", ""
if not question.strip():
return "β οΈ Please enter a question!", None, "", ""
# Get query embedding
query_embedding = embedding_model.encode([question])
# Search
distances, indices = index.search(np.array(query_embedding), int(k_retrieval))
retrieved_chunks = [chunks[i] for i in indices[0]]
# Generate answer
context = " ".join(retrieved_chunks)
answer = qa_pipeline(question=question, context=context)
# Format results
confidence = answer['score']
# Determine confidence level
if confidence >= 0.8:
confidence_emoji = "π’"
confidence_text = "Very High"
elif confidence >= 0.6:
confidence_emoji = "π΅"
confidence_text = "High"
elif confidence >= 0.4:
confidence_emoji = "π‘"
confidence_text = "Medium"
else:
confidence_emoji = "π΄"
confidence_text = "Low"
# Format answer
formatted_answer = f"""
π€ **Answer**: {answer['answer']}
{confidence_emoji} **Confidence**: {confidence:.1%} ({confidence_text})
π **Answer Length**: {len(answer['answer'])} characters
π **Chunks Used**: {len(retrieved_chunks)}
"""
# Format retrieved chunks
retrieved_text = "π **Retrieved Context Chunks:**\n\n"
for i, chunk in enumerate(retrieved_chunks):
similarity = 1 / (1 + distances[0][i])
retrieved_text += f"**Chunk {i+1}** (Similarity: {similarity:.3f}):\n{chunk}\n\n---\n\n"
# Create similarity visualization
similarity_scores = 1 / (1 + distances[0])
similarity_plot = create_similarity_plot(similarity_scores)
return formatted_answer, similarity_plot, retrieved_text, create_confidence_gauge(confidence)
def create_similarity_plot(similarity_scores):
"""Create similarity scores bar chart"""
fig = go.Figure(data=[
go.Bar(x=[f"Rank {i+1}" for i in range(len(similarity_scores))],
y=similarity_scores,
marker_color=['gold', 'silver', '#CD7F32'][:len(similarity_scores)],
text=[f'{score:.3f}' for score in similarity_scores],
textposition='auto')
])
fig.update_layout(
title="π― Retrieved Chunks Similarity Scores",
xaxis_title="Retrieved Chunk Rank",
yaxis_title="Similarity Score",
height=400
)
return fig
def create_confidence_gauge(confidence):
"""Create confidence gauge visualization"""
fig = go.Figure(go.Indicator(
mode = "gauge+number+delta",
value = confidence * 100,
domain = {'x': [0, 1], 'y': [0, 1]},
title = {'text': "π― Answer Confidence (%)"},
delta = {'reference': 80},
gauge = {
'axis': {'range': [None, 100]},
'bar': {'color': "darkblue"},
'steps': [
{'range': [0, 20], 'color': "red"},
{'range': [20, 40], 'color': "orange"},
{'range': [40, 60], 'color': "yellow"},
{'range': [60, 80], 'color': "lightgreen"},
{'range': [80, 100], 'color': "green"}
],
'threshold': {
'line': {'color': "black", 'width': 4},
'thickness': 0.75,
'value': 90
}
}
))
fig.update_layout(height=400)
return fig
def clear_data():
"""Clear all processed data"""
global chunks, embeddings, index, document
chunks = None
embeddings = None
index = None
document = None
return "ποΈ Data cleared! Ready for new article.", None, "", "", None, None, ""
# Create Gradio interface optimized for Hugging Face Spaces
def create_interface():
"""Create the main Gradio interface"""
with gr.Blocks(
title="π RAG Pipeline For LLMs",
theme=gr.themes.Soft(),
) as interface:
# Header
gr.Markdown("""
# π RAG Pipeline For LLMs π
<div style="text-align: center; color: #666; margin-bottom: 2rem;">
An intelligent Q&A system powered by π€ Hugging Face, π Wikipedia, and β‘ FAISS vector search
</div>
""")
with gr.Tab("π Article Processing"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### π Step 1: Configure & Process Article")
topic_input = gr.Textbox(
label="π Wikipedia Topic",
placeholder="e.g., Artificial Intelligence, Climate Change, Python Programming",
info="Enter any topic available on Wikipedia"
)
with gr.Row():
chunk_size = gr.Slider(
label="π Chunk Size (tokens)",
minimum=128,
maximum=512,
value=256,
step=32,
info="Larger chunks = more context, smaller chunks = more precision"
)
chunk_overlap = gr.Slider(
label="π Chunk Overlap (tokens)",
minimum=10,
maximum=50,
value=20,
step=5,
info="Overlap helps maintain context between chunks"
)
process_btn = gr.Button("π Fetch & Process Article", variant="primary", size="lg")
processing_status = gr.Textbox(
label="π Processing Status",
interactive=False
)
with gr.Column(scale=1):
processing_summary = gr.Markdown("### π Processing Summary\n*Process an article to see statistics*")
chunk_plot = gr.Plot(label="π Chunk Analysis Visualization")
with gr.Tab("β Question Answering"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### π― Step 2: Ask Your Question")
question_input = gr.Textbox(
label="β Your Question",
placeholder="e.g., What is the main concept? How does it work?",
info="Ask any question about the processed article"
)
k_retrieval = gr.Slider(
label="π Number of Chunks to Retrieve",
minimum=1,
maximum=10,
value=3,
step=1,
info="More chunks = broader context, fewer chunks = more focused"
)
answer_btn = gr.Button("π― Get Answer", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### π‘ Tips\n- Process an article first\n- Ask specific questions\n- Adjust retrieval count for better results")
answer_output = gr.Markdown(label="π€ Generated Answer")
with gr.Row():
similarity_plot = gr.Plot(label="π― Similarity Scores")
confidence_gauge = gr.Plot(label="π Confidence Meter")
with gr.Tab("π Retrieved Context"):
retrieved_chunks = gr.Markdown(
label="π Retrieved Chunks",
value="*Ask a question to see retrieved context chunks*"
)
# Event handlers
process_btn.click(
fn=process_article,
inputs=[topic_input, chunk_size, chunk_overlap],
outputs=[processing_status, chunk_plot, processing_summary]
)
answer_btn.click(
fn=answer_question,
inputs=[question_input, k_retrieval],
outputs=[answer_output, similarity_plot, retrieved_chunks, confidence_gauge]
)
# Footer
gr.Markdown("""
---
<div style="text-align: center; color: #666; padding: 1rem;">
π RAG Pipeline Demo | Built with β€οΈ using Gradio, Hugging Face, and FAISS<br>
π€ Models: sentence-transformers/all-mpnet-base-v2 | deepset/roberta-base-squad2
</div>
""")
return interface
# Launch the app for Hugging Face Spaces
if __name__ == "__main__":
interface = create_interface()
interface.launch()
|