Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Processor class for Llava. | |
| """ | |
| from typing import List, Optional, Union, Dict | |
| # from ...feature_extraction_utils import BatchFeature | |
| # from ...image_utils import ImageInput | |
| # from ...processing_utils import ProcessorMixin | |
| # from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | |
| # from ...utils import TensorType | |
| from transformers.feature_extraction_sequence_utils import BatchFeature | |
| from transformers.image_utils import ImageInput | |
| from transformers.processing_utils import ProcessorMixin | |
| from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | |
| from transformers.utils import TensorType | |
| from PIL import Image | |
| import logging | |
| import torch | |
| import numpy as np | |
| logger = logging.getLogger(__name__) | |
| class MLlavaProcessor(ProcessorMixin): | |
| r""" | |
| Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor. | |
| [`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the | |
| [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information. | |
| Args: | |
| image_processor ([`CLIPImageProcessor`], *optional*): | |
| The image processor is a required input. | |
| tokenizer ([`LlamaTokenizerFast`], *optional*): | |
| The tokenizer is a required input. | |
| """ | |
| attributes = ["image_processor", "tokenizer"] | |
| image_processor_class = "CLIPImageProcessor" | |
| tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") | |
| def __init__(self, image_processor=None, tokenizer=None): | |
| super().__init__(image_processor, tokenizer) | |
| def preprocess_interleaved_images_and_text( | |
| self, | |
| text, | |
| images=None, | |
| ): | |
| """ | |
| Args: | |
| text (`str`, `List[str]`): | |
| The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
| (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
| `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
| text can contain <image> tokens as the placeholder for the image(s) to be inserted. | |
| images (`PIL.Image.Image`, `List[PIL.Image.Image]`, `List[List[PIL.Image.Image]]`): | |
| The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
| tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | |
| number of channels, H and W are image height and width. | |
| the number of the images should match the number of <image> tokens in the text. | |
| """ | |
| assert text is not None, "text cannot be None." | |
| if images is not None: | |
| if isinstance(images, Image.Image): | |
| images = [images] | |
| if isinstance(images, list) and isinstance(images[0], Image.Image): | |
| if isinstance(text, str): | |
| images = [images] | |
| elif isinstance(text, list): | |
| if len(text) != len(images): | |
| raise ValueError("Invalid input text. Number of texts does not match number of images.") | |
| images = [[image] for image in images] | |
| if isinstance(text, str): | |
| num_images = len(images[0]) | |
| num_image_tokens = text.count("<image>") | |
| if num_image_tokens < num_images: | |
| # prepend empty image tokens to text | |
| if "USER:" in text: | |
| text = text.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1) | |
| elif "Human:" in text: | |
| text = text.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1) | |
| elif "HUMAN:" in text: | |
| text = text.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1) | |
| else: | |
| text = "<image>" * (num_images - num_image_tokens) + text | |
| # logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.") | |
| elif num_image_tokens > num_images: | |
| text = text.split("<image>") | |
| for i, t in enumerate(text): | |
| if i < num_images: | |
| text[i] = t + "<image>" | |
| text = "".join(text) | |
| logger.warning("Number of <image> tokens exceeds number of images. Automatically removing extra tokens at the end of the text.") | |
| # raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.") | |
| texts = [text] | |
| elif isinstance(text, list): | |
| if not isinstance(text[0], str): | |
| raise ValueError("Invalid input text. Each element of text must be a string.") | |
| for i, t in enumerate(text): | |
| num_image_tokens = t.count("<image>") | |
| num_images = len(images[i]) | |
| if num_image_tokens < num_images: | |
| # prepend empty image tokens to text | |
| if "USER:" in t: | |
| t = t.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1) | |
| elif "Human:" in t: | |
| t = t.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1) | |
| elif "HUMAN:" in t: | |
| t = t.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1) | |
| else: | |
| t = "<image>" * (num_images - num_image_tokens) + t | |
| # logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.") | |
| elif num_image_tokens > num_images: | |
| t = t.split("<image>") | |
| for j, s in enumerate(t): | |
| if j < num_images: | |
| t[j] = s + "<image>" | |
| t = "".join(t) | |
| logger.warning("Number of <image> tokens exceeds number of images. Automatically removing extra tokens at the end of the text.") | |
| # raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.") | |
| text[i] = t | |
| texts = text | |
| else: | |
| raise ValueError("Invalid input text. text must be a string or a list of strings.") | |
| assert all([t.count("<image>") == len(images_per_text) for t, images_per_text in zip(texts, images)]), "Number of <image> tokens in text does not match number of images." | |
| # add image denotation in text before each <image> as "(image {i}: <image>)" | |
| for i, t in enumerate(texts): | |
| for j in range(len(images[i])): | |
| t = t.replace("<image>", f"(image {j+1}: <Image><IMAGE></Image>)", 1) | |
| t = t.replace("<IMAGE>", "<image>") | |
| texts[i] = t | |
| # flatten images | |
| images = [image for images_per_text in images for image in images_per_text] | |
| else: | |
| if isinstance(text, str): | |
| texts = [text] | |
| elif isinstance(text, list): | |
| if not isinstance(text[0], str): | |
| raise ValueError("Invalid input text. Each element of text must be a string.") | |
| texts = text | |
| else: | |
| raise ValueError("Invalid input text. text must be a string or a list of strings.") | |
| return texts, images | |
| def __call__( | |
| self, | |
| text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | |
| images: ImageInput = None, | |
| padding: Union[bool, str, PaddingStrategy] = False, | |
| truncation: Union[bool, str, TruncationStrategy] = None, | |
| max_length=None, | |
| return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | |
| ) -> BatchFeature: | |
| """ | |
| Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
| and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode | |
| the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | |
| CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | |
| of the above two methods for more information. | |
| Args: | |
| text (`str`, `List[str]`, `List[List[str]]`): | |
| The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
| (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
| `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
| images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
| The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
| tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | |
| number of channels, H and W are image height and width. | |
| padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | |
| Select a strategy to pad the returned sequences (according to the model's padding side and padding | |
| index) among: | |
| - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
| sequence if provided). | |
| - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | |
| acceptable input length for the model if that argument is not provided. | |
| - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | |
| lengths). | |
| max_length (`int`, *optional*): | |
| Maximum length of the returned list and optionally padding length (see above). | |
| truncation (`bool`, *optional*): | |
| Activates truncation to cut input sequences longer than `max_length` to `max_length`. | |
| return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
| If set, will return tensors of a particular framework. Acceptable values are: | |
| - `'tf'`: Return TensorFlow `tf.constant` objects. | |
| - `'pt'`: Return PyTorch `torch.Tensor` objects. | |
| - `'np'`: Return NumPy `np.ndarray` objects. | |
| - `'jax'`: Return JAX `jnp.ndarray` objects. | |
| Returns: | |
| [`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
| - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
| - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
| `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
| `None`). | |
| - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
| """ | |
| texts, images = self.preprocess_interleaved_images_and_text(text, images) | |
| if images is not None: | |
| pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] # [batch_size, num_channels, height, width], e.g. [1, 3, 336, 336] | |
| else: | |
| pixel_values = None | |
| text_inputs = self.tokenizer( | |
| texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length | |
| ) | |
| # text_inputs: | |
| # 1. input_ids: [batch_size, sequence_length], e.g. [1, 6] | |
| # 2. attention_mask: [batch_size, sequence_length], e.g. [1, 6] | |
| return BatchFeature(data={**text_inputs, "pixel_values": pixel_values}) | |
| # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama | |
| def batch_decode(self, *args, **kwargs): | |
| """ | |
| This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
| refer to the docstring of this method for more information. | |
| """ | |
| return self.tokenizer.batch_decode(*args, **kwargs) | |
| # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama | |
| def decode(self, *args, **kwargs): | |
| """ | |
| This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
| the docstring of this method for more information. | |
| """ | |
| return self.tokenizer.decode(*args, **kwargs) | |
| # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names | |
| def model_input_names(self): | |
| tokenizer_input_names = self.tokenizer.model_input_names | |
| image_processor_input_names = self.image_processor.model_input_names | |
| return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |
| def _right_pad_inputs_with_attention_mask(self, model_inputs: List[Dict]): | |
| results = {} | |
| assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs)) | |
| for k in model_inputs[0].keys(): | |
| if model_inputs[0][k] is not None: | |
| results[k] = torch.cat([inputs[k] for inputs in model_inputs], dim=0) | |
| else: | |
| results[k] = None | |
| return results | |