Spaces:
Running
Running
Commit
·
6df1c09
1
Parent(s):
558435d
Update
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Dockerfile +3 -3
- HUGGINGFACE_DEPLOYMENT.md +216 -0
- backend/Ultralytics/settings.json +21 -0
- backend/__pycache__/app.cpython-311.pyc +0 -0
- backend/__pycache__/app.cpython-312.pyc +0 -0
- backend/__pycache__/augmentations.cpython-311.pyc +0 -0
- backend/__pycache__/augmentations.cpython-312.pyc +0 -0
- backend/__pycache__/model.cpython-311.pyc +0 -0
- backend/__pycache__/model.cpython-312.pyc +0 -0
- backend/__pycache__/model_histo.cpython-311.pyc +0 -0
- backend/__pycache__/model_histo.cpython-312.pyc +0 -0
- backend/app.py +904 -96
- frontend/public/cyto/cyt1.jpg → backend/outputs/detected_1a8f90ea.jpg +2 -2
- frontend/public/cyto/cyt3.png → backend/outputs/detected_1c20231d.jpg +2 -2
- backend/outputs/detected_2198d45d.jpg +3 -0
- backend/outputs/detected_258af4fa.jpg +3 -0
- backend/outputs/detected_268b6165.jpg +3 -0
- backend/outputs/detected_39406fb4.jpg +3 -0
- backend/outputs/detected_39c91983.jpg +3 -0
- backend/outputs/detected_46cf6466.jpg +3 -0
- backend/outputs/detected_48f5ddde.jpg +3 -0
- backend/outputs/detected_4dc34d38.jpg +3 -0
- backend/outputs/detected_4e71956d.jpg +3 -0
- backend/outputs/detected_53ef21ce.jpg +3 -0
- backend/outputs/detected_5af838c6.jpg +3 -0
- backend/outputs/detected_5e93888d.jpg +3 -0
- backend/outputs/detected_6526bf9c.jpg +3 -0
- backend/outputs/detected_669a5877.jpg +3 -0
- backend/outputs/detected_85aa7683.jpg +3 -0
- backend/outputs/detected_8eed01a5.jpg +3 -0
- backend/outputs/detected_907c0662.jpg +3 -0
- backend/outputs/detected_91737a8d.jpg +3 -0
- backend/outputs/detected_abff463d.jpg +3 -0
- backend/outputs/detected_b02db619.jpg +3 -0
- backend/outputs/detected_cb4d377f.jpg +3 -0
- backend/outputs/detected_df1af137.jpg +3 -0
- backend/outputs/detected_e01aa42a.jpg +3 -0
- backend/outputs/detected_e5762460.jpg +3 -0
- backend/outputs/detected_e705fd2d.jpg +3 -0
- backend/outputs/detected_e9a00302.jpg +3 -0
- backend/outputs/detected_fd305c21.jpg +3 -0
- backend/outputs/images/detected_104914d9.jpg +3 -0
- backend/outputs/images/detected_14e068c7.jpg +3 -0
- backend/outputs/images/detected_3861cc56.jpg +3 -0
- backend/outputs/images/detected_5e5e7d55.jpg +3 -0
- backend/outputs/images/detected_7b413ad9.jpg +3 -0
- backend/outputs/images/detected_7d0787ca.jpg +3 -0
- backend/outputs/images/detected_8e6cc7ce.jpg +3 -0
- backend/outputs/images/detected_a13a604c.jpg +3 -0
- backend/outputs/images/detected_ca6e3067.jpg +3 -0
Dockerfile
CHANGED
|
@@ -36,8 +36,8 @@ RUN pip install -r requirements.txt || pip install -r backend/requirements.txt |
|
|
| 36 |
# Install runtime dependencies explicitly
|
| 37 |
RUN pip install --no-cache-dir fastapi uvicorn python-multipart ultralytics opencv-python-headless pillow numpy scikit-learn tensorflow keras
|
| 38 |
|
| 39 |
-
# Hugging Face Spaces
|
| 40 |
EXPOSE 7860
|
| 41 |
|
| 42 |
-
# Run FastAPI app
|
| 43 |
-
CMD ["
|
|
|
|
| 36 |
# Install runtime dependencies explicitly
|
| 37 |
RUN pip install --no-cache-dir fastapi uvicorn python-multipart ultralytics opencv-python-headless pillow numpy scikit-learn tensorflow keras
|
| 38 |
|
| 39 |
+
# Hugging Face Spaces sets PORT (default 7860). Listen on $PORT for compatibility.
|
| 40 |
EXPOSE 7860
|
| 41 |
|
| 42 |
+
# Run FastAPI app (respect PORT env var if set by the platform)
|
| 43 |
+
CMD ["sh", "-c", "uvicorn app:app --host 0.0.0.0 --port ${PORT:-7860}"]
|
HUGGINGFACE_DEPLOYMENT.md
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hugging Face Spaces Deployment Guide
|
| 2 |
+
|
| 3 |
+
## ✅ Changes Made for Hugging Face Spaces Compatibility
|
| 4 |
+
|
| 5 |
+
### 1. Port Configuration
|
| 6 |
+
- **Updated `backend/app.py`**: Server now reads `PORT` from environment variable (default: 7860)
|
| 7 |
+
```python
|
| 8 |
+
port = int(os.environ.get("PORT", 7860))
|
| 9 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
| 10 |
+
```
|
| 11 |
+
- **Updated `Dockerfile`**: CMD uses `${PORT:-7860}` for dynamic port binding
|
| 12 |
+
|
| 13 |
+
### 2. Filesystem Permissions
|
| 14 |
+
- **Changed output directory**: `OUTPUT_DIR` now uses `/tmp/outputs` instead of `./outputs`
|
| 15 |
+
- Hugging Face Spaces containers have read-only `/app` directory
|
| 16 |
+
- `/tmp` is writable for temporary files
|
| 17 |
+
- **Note**: Files in `/tmp` are ephemeral and lost on restart
|
| 18 |
+
|
| 19 |
+
### 3. Static File Serving
|
| 20 |
+
- **Fixed sample image serving**: Mounted `/cyto`, `/colpo`, `/histo` directories from `frontend/dist`
|
| 21 |
+
- **Added catch-all route**: Serves static files (logos, banners) from dist root
|
| 22 |
+
- **Frontend dist path fallback**: Checks both `./frontend/dist` (Docker) and `../frontend/dist` (local dev)
|
| 23 |
+
|
| 24 |
+
### 4. Frontend Configuration
|
| 25 |
+
- **Frontend already configured**: Uses `window.location.origin` in production, so API calls work on any domain
|
| 26 |
+
- **Vite build**: Copies `public/` contents to `dist/` automatically
|
| 27 |
+
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
+
## 📋 Deployment Checklist
|
| 31 |
+
|
| 32 |
+
### Step 1: Create Hugging Face Space
|
| 33 |
+
1. Go to https://huggingface.co/spaces
|
| 34 |
+
2. Click **"Create new Space"**
|
| 35 |
+
3. Choose:
|
| 36 |
+
- **Space SDK**: Docker
|
| 37 |
+
- **Hardware**: CPU Basic (free) or GPU (for faster inference)
|
| 38 |
+
- **Visibility**: Public or Private
|
| 39 |
+
|
| 40 |
+
### Step 2: Set Up Git LFS (for large model files)
|
| 41 |
+
Your project has large model files (`.pt`, `.pth`, `.keras`). Track them with Git LFS:
|
| 42 |
+
|
| 43 |
+
```bash
|
| 44 |
+
# Install Git LFS if not already installed
|
| 45 |
+
git lfs install
|
| 46 |
+
|
| 47 |
+
# Track model files
|
| 48 |
+
git lfs track "*.pt"
|
| 49 |
+
git lfs track "*.pth"
|
| 50 |
+
git lfs track "*.keras"
|
| 51 |
+
git lfs track "*.pkl"
|
| 52 |
+
|
| 53 |
+
# Commit .gitattributes
|
| 54 |
+
git add .gitattributes
|
| 55 |
+
git commit -m "Track model files with Git LFS"
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
### Step 3: Configure Secrets (Optional)
|
| 59 |
+
If you want AI-generated summaries using Mistral, add a secret:
|
| 60 |
+
|
| 61 |
+
1. Go to Space Settings → Variables and secrets
|
| 62 |
+
2. Add new secret:
|
| 63 |
+
- Name: `HF_TOKEN`
|
| 64 |
+
- Value: Your Hugging Face token (from https://huggingface.co/settings/tokens)
|
| 65 |
+
|
| 66 |
+
### Step 4: Push Code to Space
|
| 67 |
+
```bash
|
| 68 |
+
# Add Space as remote
|
| 69 |
+
git remote add space https://huggingface.co/spaces/<YOUR_USERNAME>/<SPACE_NAME>
|
| 70 |
+
|
| 71 |
+
# Push to Space
|
| 72 |
+
git push space main
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
### Step 5: Monitor Build
|
| 76 |
+
- Hugging Face will build the Docker image (this may take 10-20 minutes)
|
| 77 |
+
- Watch logs in the Space's "Logs" tab
|
| 78 |
+
- Once built, the Space will automatically start
|
| 79 |
+
|
| 80 |
+
---
|
| 81 |
+
|
| 82 |
+
## 🔍 Troubleshooting
|
| 83 |
+
|
| 84 |
+
### Build Issues
|
| 85 |
+
|
| 86 |
+
**Problem**: Docker build times out or fails
|
| 87 |
+
- **Solution**: Reduce image size by pinning lighter dependencies in `requirements.txt`
|
| 88 |
+
- **Solution**: Consider using pre-built wheels for TensorFlow/PyTorch
|
| 89 |
+
|
| 90 |
+
**Problem**: Model files not found
|
| 91 |
+
- **Solution**: Ensure Git LFS is configured and model files are committed
|
| 92 |
+
- **Solution**: Check that model paths in `backend/app.py` match actual filenames
|
| 93 |
+
|
| 94 |
+
### Runtime Issues
|
| 95 |
+
|
| 96 |
+
**Problem**: 404 errors for sample images
|
| 97 |
+
- **Solution**: Rebuild frontend: `cd frontend && npm run build`
|
| 98 |
+
- **Solution**: Verify `frontend/public/` contents are copied to `dist/`
|
| 99 |
+
|
| 100 |
+
**Problem**: Permission denied errors
|
| 101 |
+
- **Solution**: All writes should go to `/tmp/outputs` (already fixed)
|
| 102 |
+
- **Solution**: Never write to `/app` directory
|
| 103 |
+
|
| 104 |
+
**Problem**: Port binding errors
|
| 105 |
+
- **Solution**: Use `$PORT` env var (already configured in Dockerfile and app.py)
|
| 106 |
+
|
| 107 |
+
### Performance Issues
|
| 108 |
+
|
| 109 |
+
**Problem**: Slow startup or inference
|
| 110 |
+
- **Solution**: Models load at startup; consider lazy loading on first request
|
| 111 |
+
- **Solution**: Upgrade to GPU hardware tier for faster inference
|
| 112 |
+
- **Solution**: Add caching for model weights
|
| 113 |
+
|
| 114 |
+
---
|
| 115 |
+
|
| 116 |
+
## 📁 File Structure Expected in Space
|
| 117 |
+
|
| 118 |
+
```
|
| 119 |
+
/app/
|
| 120 |
+
├── app.py # Main FastAPI app
|
| 121 |
+
├── model.py, model_histo.py, etc. # Model definitions
|
| 122 |
+
├── augmentations.py # Image preprocessing
|
| 123 |
+
├── requirements.txt # Python dependencies
|
| 124 |
+
├── best2.pt # YOLO cytology model
|
| 125 |
+
├── MWTclass2.pth # MWT classifier
|
| 126 |
+
├── yolo_colposcopy.pt # YOLO colposcopy model
|
| 127 |
+
├── histopathology_trained_model.keras # Histopathology model
|
| 128 |
+
├── logistic_regression_model.pkl # CIN classifier (optional)
|
| 129 |
+
└── frontend/
|
| 130 |
+
└── dist/ # Built frontend
|
| 131 |
+
├── index.html
|
| 132 |
+
├── assets/ # JS/CSS bundles
|
| 133 |
+
├── cyto/ # Sample cytology images
|
| 134 |
+
├── colpo/ # Sample colposcopy images
|
| 135 |
+
├── histo/ # Sample histopathology images
|
| 136 |
+
└── *.png, *.jpeg # Logos, banners
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
---
|
| 140 |
+
|
| 141 |
+
## 🌐 Access Your Space
|
| 142 |
+
|
| 143 |
+
Once deployed, your app will be available at:
|
| 144 |
+
```
|
| 145 |
+
https://huggingface.co/spaces/<YOUR_USERNAME>/<SPACE_NAME>
|
| 146 |
+
```
|
| 147 |
+
|
| 148 |
+
The frontend serves at `/` and the API is accessible at:
|
| 149 |
+
- `POST /predict/` - Run model inference
|
| 150 |
+
- `POST /reports/` - Generate medical reports
|
| 151 |
+
- `GET /health` - Health check
|
| 152 |
+
- `GET /models` - List available models
|
| 153 |
+
|
| 154 |
+
---
|
| 155 |
+
|
| 156 |
+
## ⚠️ Important Notes
|
| 157 |
+
|
| 158 |
+
### Ephemeral Storage
|
| 159 |
+
- Files in `/tmp/outputs` are **lost on restart**
|
| 160 |
+
- For persistent reports, consider:
|
| 161 |
+
- Downloading immediately after generation
|
| 162 |
+
- Uploading to external storage (S3, Hugging Face Datasets)
|
| 163 |
+
- Using Persistent Storage (requires paid tier)
|
| 164 |
+
|
| 165 |
+
### Model Loading Time
|
| 166 |
+
- All models load at startup (~30-60 seconds)
|
| 167 |
+
- First request after restart may be slower
|
| 168 |
+
- Consider implementing health check endpoint that waits for models
|
| 169 |
+
|
| 170 |
+
### Resource Limits
|
| 171 |
+
- Free CPU tier: Limited RAM and CPU
|
| 172 |
+
- Models are memory-intensive (TensorFlow + PyTorch + YOLO)
|
| 173 |
+
- May need **CPU Upgrade** or **GPU** tier for production use
|
| 174 |
+
|
| 175 |
+
### CORS
|
| 176 |
+
- Currently allows all origins (`allow_origins=["*"]`)
|
| 177 |
+
- For production, restrict to your Space domain
|
| 178 |
+
|
| 179 |
+
---
|
| 180 |
+
|
| 181 |
+
## 🚀 Next Steps After Deployment
|
| 182 |
+
|
| 183 |
+
1. **Test all three models**:
|
| 184 |
+
- Upload cytology sample → Test YOLO detection
|
| 185 |
+
- Upload colposcopy sample → Test CIN classification
|
| 186 |
+
- Upload histopathology sample → Test breast cancer classification
|
| 187 |
+
|
| 188 |
+
2. **Generate a test report**:
|
| 189 |
+
- Run an analysis
|
| 190 |
+
- Fill out patient metadata
|
| 191 |
+
- Generate HTML/PDF report
|
| 192 |
+
- Verify download links work
|
| 193 |
+
|
| 194 |
+
3. **Monitor performance**:
|
| 195 |
+
- Check inference times
|
| 196 |
+
- Monitor memory usage in Space logs
|
| 197 |
+
- Consider upgrading hardware if needed
|
| 198 |
+
|
| 199 |
+
4. **Share your Space**:
|
| 200 |
+
- Add a README with usage instructions
|
| 201 |
+
- Include sample images in the repo
|
| 202 |
+
- Add citations for model papers
|
| 203 |
+
|
| 204 |
+
---
|
| 205 |
+
|
| 206 |
+
## 📞 Support
|
| 207 |
+
|
| 208 |
+
If you encounter issues:
|
| 209 |
+
1. Check Space logs: Settings → Logs
|
| 210 |
+
2. Verify all model files are present: Settings → Files
|
| 211 |
+
3. Test locally with Docker: `docker build -t pathora . && docker run -p 7860:7860 pathora`
|
| 212 |
+
4. Open an issue on Hugging Face Discuss: https://discuss.huggingface.co/
|
| 213 |
+
|
| 214 |
+
---
|
| 215 |
+
|
| 216 |
+
**Deployment ready! 🎉**
|
backend/Ultralytics/settings.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"settings_version": "0.0.6",
|
| 3 |
+
"datasets_dir": "C:\\Users\\datasets",
|
| 4 |
+
"weights_dir": "C:\\Users\\hp\\weights",
|
| 5 |
+
"runs_dir": "C:\\Users\\hp\\runs",
|
| 6 |
+
"uuid": "b8318bcfc07be7433d16fc866923188fe796248b2a6e702ba099b726960ef46b",
|
| 7 |
+
"sync": true,
|
| 8 |
+
"api_key": "",
|
| 9 |
+
"openai_api_key": "",
|
| 10 |
+
"clearml": true,
|
| 11 |
+
"comet": true,
|
| 12 |
+
"dvc": true,
|
| 13 |
+
"hub": true,
|
| 14 |
+
"mlflow": true,
|
| 15 |
+
"neptune": true,
|
| 16 |
+
"raytune": true,
|
| 17 |
+
"tensorboard": false,
|
| 18 |
+
"wandb": false,
|
| 19 |
+
"vscode_msg": true,
|
| 20 |
+
"openvino_msg": true
|
| 21 |
+
}
|
backend/__pycache__/app.cpython-311.pyc
ADDED
|
Binary file (35.6 kB). View file
|
|
|
backend/__pycache__/app.cpython-312.pyc
ADDED
|
Binary file (50.8 kB). View file
|
|
|
backend/__pycache__/augmentations.cpython-311.pyc
ADDED
|
Binary file (22.7 kB). View file
|
|
|
backend/__pycache__/augmentations.cpython-312.pyc
CHANGED
|
Binary files a/backend/__pycache__/augmentations.cpython-312.pyc and b/backend/__pycache__/augmentations.cpython-312.pyc differ
|
|
|
backend/__pycache__/model.cpython-311.pyc
ADDED
|
Binary file (34.2 kB). View file
|
|
|
backend/__pycache__/model.cpython-312.pyc
CHANGED
|
Binary files a/backend/__pycache__/model.cpython-312.pyc and b/backend/__pycache__/model.cpython-312.pyc differ
|
|
|
backend/__pycache__/model_histo.cpython-311.pyc
ADDED
|
Binary file (74.3 kB). View file
|
|
|
backend/__pycache__/model_histo.cpython-312.pyc
CHANGED
|
Binary files a/backend/__pycache__/model_histo.cpython-312.pyc and b/backend/__pycache__/model_histo.cpython-312.pyc differ
|
|
|
backend/app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
|
| 4 |
-
|
| 5 |
for d in ["/tmp/huggingface", "/tmp/Ultralytics", "/tmp/matplotlib", "/tmp/torch", "/root/.cache"]:
|
| 6 |
shutil.rmtree(d, ignore_errors=True)
|
| 7 |
|
|
@@ -11,75 +10,284 @@ os.environ["TORCH_HOME"] = "/tmp/torch"
|
|
| 11 |
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
| 12 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
from fastapi import FastAPI, File, UploadFile, Form
|
| 24 |
from fastapi.middleware.cors import CORSMiddleware
|
| 25 |
from fastapi.responses import JSONResponse, FileResponse
|
|
|
|
|
|
|
| 26 |
from fastapi.staticfiles import StaticFiles
|
| 27 |
-
from ultralytics import YOLO
|
| 28 |
-
from io import BytesIO
|
| 29 |
-
from PIL import Image
|
| 30 |
import uvicorn
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
from sklearn.preprocessing import MinMaxScaler
|
| 36 |
from model import MWT as create_model
|
| 37 |
from augmentations import Augmentations
|
| 38 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
|
| 42 |
# =====================================================
|
| 43 |
-
|
|
|
|
|
|
|
| 44 |
# =====================================================
|
| 45 |
-
|
|
|
|
| 46 |
|
| 47 |
app.add_middleware(
|
| 48 |
CORSMiddleware,
|
| 49 |
-
allow_origins=["*"],
|
| 50 |
allow_credentials=True,
|
| 51 |
allow_methods=["*"],
|
| 52 |
allow_headers=["*"],
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
-
|
|
|
|
| 56 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
app.mount("/outputs", StaticFiles(directory=OUTPUT_DIR), name="outputs")
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 60 |
|
| 61 |
# =====================================================
|
| 62 |
-
|
|
|
|
|
|
|
| 63 |
# =====================================================
|
|
|
|
| 64 |
print("🔹 Loading YOLO model...")
|
| 65 |
yolo_model = YOLO("best2.pt")
|
| 66 |
|
| 67 |
-
# =====================================================
|
| 68 |
-
# Model 2: MWT Classifier
|
| 69 |
-
# =====================================================
|
| 70 |
print("🔹 Loading MWT model...")
|
| 71 |
mwt_model = create_model(num_classes=2).to(device)
|
| 72 |
mwt_model.load_state_dict(torch.load("MWTclass2.pth", map_location=device))
|
| 73 |
mwt_model.eval()
|
| 74 |
-
mwt_class_names = [
|
| 75 |
|
| 76 |
-
# =====================================================
|
| 77 |
-
# Model 3: CIN Classifier
|
| 78 |
-
# =====================================================
|
| 79 |
print("🔹 Loading CIN model...")
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
yolo_colposcopy = YOLO("yolo_colposcopy.pt")
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
def build_resnet(model_name="resnet50"):
|
| 84 |
if model_name == "resnet50":
|
| 85 |
model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
|
|
@@ -92,7 +300,6 @@ def build_resnet(model_name="resnet50"):
|
|
| 92 |
nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool),
|
| 93 |
model.layer1, model.layer2, model.layer3, model.layer4,
|
| 94 |
)
|
| 95 |
-
|
| 96 |
gap = nn.AdaptiveAvgPool2d((1, 1))
|
| 97 |
gmp = nn.AdaptiveMaxPool2d((1, 1))
|
| 98 |
resnet50_blocks = build_resnet("resnet50")
|
|
@@ -100,29 +307,14 @@ resnet101_blocks = build_resnet("resnet101")
|
|
| 100 |
resnet152_blocks = build_resnet("resnet152")
|
| 101 |
|
| 102 |
transform = transforms.Compose([
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
])
|
| 109 |
|
| 110 |
-
# =====================================================
|
| 111 |
-
# Model 4: Histopathology Classifier (TensorFlow)
|
| 112 |
-
# =====================================================
|
| 113 |
-
print("🔹 Loading Breast Cancer Histopathology model...")
|
| 114 |
-
classifier = BreastCancerClassifier(fine_tune=False)
|
| 115 |
-
if not classifier.authenticate_huggingface():
|
| 116 |
-
raise RuntimeError("HuggingFace authentication failed.")
|
| 117 |
-
if not classifier.load_path_foundation():
|
| 118 |
-
raise RuntimeError("Failed to load Path Foundation model.")
|
| 119 |
-
model_path = "histopathology_trained_model.keras"
|
| 120 |
-
classifier.model = tf.keras.models.load_model(model_path)
|
| 121 |
-
print(f"✅ Loaded model from {model_path}")
|
| 122 |
|
| 123 |
-
# =====================================================
|
| 124 |
-
# Helper functions
|
| 125 |
-
# =====================================================
|
| 126 |
def preprocess_for_mwt(image_np):
|
| 127 |
img = cv2.resize(image_np, (224, 224))
|
| 128 |
img = Augmentations.Normalization((0, 1))(img)
|
|
@@ -145,48 +337,147 @@ def extract_cbf_features(blocks, img_t):
|
|
| 145 |
p3 = gap(f3).view(-1)
|
| 146 |
p4 = gap(f4).view(-1)
|
| 147 |
p5 = gap(f5).view(-1)
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
}
|
| 168 |
-
|
|
|
|
|
|
|
| 169 |
|
| 170 |
# =====================================================
|
| 171 |
-
|
|
|
|
|
|
|
| 172 |
# =====================================================
|
|
|
|
|
|
|
| 173 |
@app.post("/predict/")
|
| 174 |
async def predict(model_name: str = Form(...), file: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
contents = await file.read()
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
if model_name == "yolo":
|
| 180 |
results = yolo_model(image)
|
| 181 |
detections_json = results[0].to_json()
|
| 182 |
detections = json.loads(detections_json)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
output_filename = f"detected_{uuid.uuid4().hex[:8]}.jpg"
|
| 184 |
-
output_path = os.path.join(
|
| 185 |
results[0].save(filename=output_path)
|
|
|
|
| 186 |
return {
|
| 187 |
"model_used": "YOLO Detection",
|
| 188 |
"detections": detections,
|
| 189 |
-
"annotated_image_url": f"/outputs/{output_filename}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
}
|
| 191 |
|
| 192 |
elif model_name == "mwt":
|
|
@@ -195,15 +486,35 @@ async def predict(model_name: str = Form(...), file: UploadFile = File(...)):
|
|
| 195 |
output = mwt_model(tensor.to(device)).cpu()
|
| 196 |
probs = torch.softmax(output, dim=1)[0]
|
| 197 |
confidences = {mwt_class_names[i]: float(probs[i]) for i in range(2)}
|
| 198 |
-
predicted_label = mwt_class_names[torch.argmax(probs)]
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
elif model_name == "cin":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
nparr = np.frombuffer(contents, np.uint8)
|
| 203 |
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
| 204 |
results = yolo_colposcopy.predict(source=img, conf=0.7, save=False, verbose=False)
|
| 205 |
if len(results[0].boxes) == 0:
|
| 206 |
return {"error": "No cervix detected"}
|
|
|
|
| 207 |
x1, y1, x2, y2 = map(int, results[0].boxes.xyxy[0].cpu().numpy())
|
| 208 |
crop = img[y1:y2, x1:x2]
|
| 209 |
crop = cv2.resize(crop, (224, 224))
|
|
@@ -215,45 +526,542 @@ async def predict(model_name: str = Form(...), file: UploadFile = File(...)):
|
|
| 215 |
X_scaled = MinMaxScaler().fit_transform(features)
|
| 216 |
pred = clf.predict(X_scaled)[0]
|
| 217 |
proba = clf.predict_proba(X_scaled)[0]
|
| 218 |
-
classes
|
|
|
|
| 219 |
predicted_label = classes[pred]
|
| 220 |
confidences = {classes[i]: float(proba[i]) for i in range(len(classes))}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
return {
|
| 222 |
"model_used": "CIN Classifier",
|
| 223 |
-
"prediction":
|
| 224 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
}
|
| 226 |
-
|
| 227 |
elif model_name == "histopathology":
|
| 228 |
-
|
| 229 |
-
|
|
|
|
| 230 |
|
| 231 |
else:
|
| 232 |
return JSONResponse(content={"error": "Invalid model name"}, status_code=400)
|
| 233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
|
| 235 |
@app.get("/models")
|
| 236 |
def get_models():
|
| 237 |
return {"available_models": ["yolo", "mwt", "cin", "histopathology"]}
|
| 238 |
|
| 239 |
-
|
| 240 |
@app.get("/health")
|
| 241 |
def health():
|
| 242 |
-
return {"message": "
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
-
# After other app.mount()s
|
| 245 |
-
app.mount("/outputs", StaticFiles(directory=OUTPUT_DIR), name="outputs")
|
| 246 |
-
app.mount("/assets", StaticFiles(directory="frontend/dist/assets"), name="assets")
|
| 247 |
-
from fastapi.staticfiles import StaticFiles
|
| 248 |
|
| 249 |
-
|
|
|
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
| 252 |
@app.get("/")
|
| 253 |
async def serve_frontend():
|
| 254 |
-
index_path = os.path.join(
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
if __name__ == "__main__":
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
|
|
|
|
| 4 |
for d in ["/tmp/huggingface", "/tmp/Ultralytics", "/tmp/matplotlib", "/tmp/torch", "/root/.cache"]:
|
| 5 |
shutil.rmtree(d, ignore_errors=True)
|
| 6 |
|
|
|
|
| 10 |
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
| 11 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
| 12 |
|
| 13 |
+
import json
|
| 14 |
+
import uuid
|
| 15 |
+
import datetime
|
| 16 |
+
import numpy as np
|
| 17 |
+
import torch
|
| 18 |
+
import cv2
|
| 19 |
+
import joblib
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
import torchvision.transforms as transforms
|
| 22 |
+
import torchvision.models as models
|
| 23 |
+
from io import BytesIO
|
| 24 |
+
from PIL import Image as PILImage
|
| 25 |
from fastapi import FastAPI, File, UploadFile, Form
|
| 26 |
from fastapi.middleware.cors import CORSMiddleware
|
| 27 |
from fastapi.responses import JSONResponse, FileResponse
|
| 28 |
+
import tensorflow as tf
|
| 29 |
+
from model_histo import BreastCancerClassifier
|
| 30 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
|
|
|
|
|
| 31 |
import uvicorn
|
| 32 |
+
try:
|
| 33 |
+
from reportlab.lib.pagesizes import letter
|
| 34 |
+
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as ReportLabImage
|
| 35 |
+
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
|
| 36 |
+
from reportlab.lib.enums import TA_CENTER, TA_JUSTIFY
|
| 37 |
+
from reportlab.lib.units import inch
|
| 38 |
+
from reportlab.lib.colors import navy, black
|
| 39 |
+
REPORTLAB_AVAILABLE = True
|
| 40 |
+
except ImportError:
|
| 41 |
+
REPORTLAB_AVAILABLE = False
|
| 42 |
+
from ultralytics import YOLO
|
| 43 |
from sklearn.preprocessing import MinMaxScaler
|
| 44 |
from model import MWT as create_model
|
| 45 |
from augmentations import Augmentations
|
| 46 |
+
from huggingface_hub import InferenceClient
|
| 47 |
+
|
| 48 |
+
# =====================================================
|
| 49 |
+
|
| 50 |
+
# SETUP TEMP DIRS AND ENV
|
| 51 |
+
|
| 52 |
+
# =====================================================
|
| 53 |
+
|
| 54 |
+
for d in ["/tmp/huggingface", "/tmp/Ultralytics", "/tmp/matplotlib", "/tmp/torch"]:
|
| 55 |
+
shutil.rmtree(d, ignore_errors=True)
|
| 56 |
+
|
| 57 |
+
os.environ["HF_HOME"] = "/tmp/huggingface"
|
| 58 |
+
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface"
|
| 59 |
+
os.environ["TORCH_HOME"] = "/tmp/torch"
|
| 60 |
+
os.environ["MPLCONFIGDIR"] = "/tmp/matplotlib"
|
| 61 |
+
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
| 62 |
+
|
| 63 |
+
# =====================================================
|
| 64 |
+
|
| 65 |
+
# HUGGING FACE CLIENT SETUP
|
| 66 |
+
|
| 67 |
+
# =====================================================
|
| 68 |
+
|
| 69 |
+
HF_MODEL_ID = "mistralai/Mistral-7B-v0.1"
|
| 70 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 71 |
+
client = None
|
| 72 |
+
|
| 73 |
+
if hf_token:
|
| 74 |
+
try:
|
| 75 |
+
client = InferenceClient(model=HF_MODEL_ID, token=hf_token)
|
| 76 |
+
print(f"✅ Hugging Face InferenceClient initialized for {HF_MODEL_ID}")
|
| 77 |
+
except Exception as e:
|
| 78 |
+
print("⚠️ Failed to initialize Hugging Face client:", e)
|
| 79 |
+
else:
|
| 80 |
+
print("⚠️ Warning: No HF_TOKEN found — summaries will be skipped.")
|
| 81 |
+
|
| 82 |
+
def generate_ai_summary(abnormal_cells, normal_cells, avg_confidence):
|
| 83 |
+
"""Generate a brief medical interpretation using Mistral."""
|
| 84 |
+
if not client:
|
| 85 |
+
return "⚠️ Hugging Face client not initialized — skipping summary."
|
| 86 |
+
|
| 87 |
+
try:
|
| 88 |
+
prompt = f"""Act as a cytopathology expert providing a brief diagnostic interpretation.
|
| 89 |
+
|
| 90 |
+
Observed Cell Counts:
|
| 91 |
+
- {abnormal_cells} Abnormal Cells
|
| 92 |
+
- {normal_cells} Normal Cells
|
| 93 |
+
- Detection Confidence: {avg_confidence:.1f}%
|
| 94 |
+
|
| 95 |
+
Write a 2-3 sentence professional medical assessment focusing on:
|
| 96 |
+
1. Cell count analysis
|
| 97 |
+
2. Abnormality ratio ({abnormal_cells/(abnormal_cells + normal_cells)*100:.1f}%)
|
| 98 |
+
3. Clinical significance
|
| 99 |
+
|
| 100 |
+
Use objective, scientific language suitable for a pathology report."""
|
| 101 |
+
|
| 102 |
+
# Use streaming to avoid StopIteration
|
| 103 |
+
response = client.text_generation(
|
| 104 |
+
prompt,
|
| 105 |
+
max_new_tokens=200,
|
| 106 |
+
temperature=0.7,
|
| 107 |
+
stream=False,
|
| 108 |
+
details=True,
|
| 109 |
+
stop_sequences=["\n\n", "###"]
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Handle different response formats
|
| 113 |
+
if hasattr(response, 'generated_text'):
|
| 114 |
+
return response.generated_text.strip()
|
| 115 |
+
elif isinstance(response, dict):
|
| 116 |
+
return response.get('generated_text', '').strip()
|
| 117 |
+
elif isinstance(response, str):
|
| 118 |
+
return response.strip()
|
| 119 |
+
|
| 120 |
+
# Fallback summary if response format is unexpected
|
| 121 |
+
ratio = abnormal_cells / (abnormal_cells + normal_cells) * 100 if (abnormal_cells + normal_cells) > 0 else 0
|
| 122 |
+
return f"Analysis shows {abnormal_cells} abnormal cells ({ratio:.1f}%) and {normal_cells} normal cells, with average detection confidence of {avg_confidence:.1f}%."
|
| 123 |
+
|
| 124 |
+
except Exception as e:
|
| 125 |
+
# Provide a structured fallback summary instead of error message
|
| 126 |
+
total = abnormal_cells + normal_cells
|
| 127 |
+
if total == 0:
|
| 128 |
+
return "No cells were detected in the sample. Consider re-scanning or adjusting detection parameters."
|
| 129 |
+
|
| 130 |
+
ratio = (abnormal_cells / total) * 100
|
| 131 |
+
severity = "high" if ratio > 70 else "moderate" if ratio > 30 else "low"
|
| 132 |
+
|
| 133 |
+
return f"Quantitative analysis detected {abnormal_cells} abnormal cells ({ratio:.1f}%) among {total} total cells, indicating {severity} abnormality ratio. Average detection confidence: {avg_confidence:.1f}%."
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def generate_mwt_summary(predicted_label, confidences, avg_confidence):
|
| 137 |
+
"""Generate a short MWT-specific interpretation using the HF client when available."""
|
| 138 |
+
if not client:
|
| 139 |
+
return "⚠️ Hugging Face client not initialized — skipping AI interpretation."
|
| 140 |
|
| 141 |
+
try:
|
| 142 |
+
prompt = f"""
|
| 143 |
+
You are a concise cytopathology expert. Given an MWT classifier result, write a 1-2 sentence professional interpretation suitable for embedding in a diagnostic report.
|
| 144 |
+
|
| 145 |
+
Result:
|
| 146 |
+
- Predicted label: {predicted_label}
|
| 147 |
+
- Confidence (average): {avg_confidence:.1f}%
|
| 148 |
+
- Class probabilities: {json.dumps(confidences)}
|
| 149 |
+
|
| 150 |
+
Provide guidance on the significance of the result and any suggested next steps in plain, objective language.
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
response = client.text_generation(
|
| 154 |
+
prompt,
|
| 155 |
+
max_new_tokens=120,
|
| 156 |
+
temperature=0.2,
|
| 157 |
+
stream=False,
|
| 158 |
+
details=True,
|
| 159 |
+
stop_sequences=["\n\n", "###"]
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
if hasattr(response, 'generated_text'):
|
| 163 |
+
return response.generated_text.strip()
|
| 164 |
+
elif isinstance(response, dict):
|
| 165 |
+
return response.get('generated_text', '').strip()
|
| 166 |
+
elif isinstance(response, str):
|
| 167 |
+
return response.strip()
|
| 168 |
+
|
| 169 |
+
return f"Result: {predicted_label} (avg confidence {avg_confidence:.1f}%)."
|
| 170 |
+
except Exception as e:
|
| 171 |
+
return f"Quantitative result: {predicted_label} with average confidence {avg_confidence:.1f}%."
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def generate_cin_summary(predicted_grade, confidences, avg_confidence):
|
| 175 |
+
"""Generate a short CIN-specific interpretation using the HF client when available."""
|
| 176 |
+
if not client:
|
| 177 |
+
return "⚠️ Hugging Face client not initialized — skipping AI interpretation."
|
| 178 |
+
|
| 179 |
+
try:
|
| 180 |
+
prompt = f"""
|
| 181 |
+
You are a concise gynecologic pathology expert. Given a CIN classifier result, write a 1-2 sentence professional interpretation suitable for a diagnostic report.
|
| 182 |
+
|
| 183 |
+
Result:
|
| 184 |
+
- Predicted grade: {predicted_grade}
|
| 185 |
+
- Confidence (average): {avg_confidence:.1f}%
|
| 186 |
+
- Class probabilities: {json.dumps(confidences)}
|
| 187 |
+
|
| 188 |
+
Provide a brief statement about clinical significance and suggested next steps (e.g., further colposcopic evaluation) in objective, clinical language.
|
| 189 |
+
"""
|
| 190 |
+
|
| 191 |
+
response = client.text_generation(
|
| 192 |
+
prompt,
|
| 193 |
+
max_new_tokens=140,
|
| 194 |
+
temperature=0.2,
|
| 195 |
+
stream=False,
|
| 196 |
+
details=True,
|
| 197 |
+
stop_sequences=["\n\n", "###"]
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
if hasattr(response, 'generated_text'):
|
| 201 |
+
return response.generated_text.strip()
|
| 202 |
+
elif isinstance(response, dict):
|
| 203 |
+
return response.get('generated_text', '').strip()
|
| 204 |
+
elif isinstance(response, str):
|
| 205 |
+
return response.strip()
|
| 206 |
+
|
| 207 |
+
return f"Result: {predicted_grade} (avg confidence {avg_confidence:.1f}%)."
|
| 208 |
+
except Exception:
|
| 209 |
+
return f"Quantitative result: {predicted_grade} with average confidence {avg_confidence:.1f}%."
|
| 210 |
|
| 211 |
|
| 212 |
# =====================================================
|
| 213 |
+
|
| 214 |
+
# FASTAPI SETUP
|
| 215 |
+
|
| 216 |
# =====================================================
|
| 217 |
+
|
| 218 |
+
app = FastAPI(title="Pathora Medical Diagnostic API")
|
| 219 |
|
| 220 |
app.add_middleware(
|
| 221 |
CORSMiddleware,
|
| 222 |
+
allow_origins=["*", "http://localhost:5173", "http://127.0.0.1:5173"],
|
| 223 |
allow_credentials=True,
|
| 224 |
allow_methods=["*"],
|
| 225 |
allow_headers=["*"],
|
| 226 |
+
expose_headers=["*"] # Allow access to response headers
|
| 227 |
)
|
| 228 |
|
| 229 |
+
# Use /tmp for outputs in Hugging Face Spaces (writable directory)
|
| 230 |
+
OUTPUT_DIR = os.environ.get("OUTPUT_DIR", "/tmp/outputs")
|
| 231 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 232 |
+
|
| 233 |
+
# Create image outputs dir
|
| 234 |
+
IMAGES_DIR = os.path.join(OUTPUT_DIR, "images")
|
| 235 |
+
os.makedirs(IMAGES_DIR, exist_ok=True)
|
| 236 |
+
|
| 237 |
app.mount("/outputs", StaticFiles(directory=OUTPUT_DIR), name="outputs")
|
| 238 |
|
| 239 |
+
# Mount public sample images from frontend dist (Vite copies public/ to dist/ root)
|
| 240 |
+
# Check both possible locations: frontend/dist (Docker) and ../frontend/dist (local dev)
|
| 241 |
+
FRONTEND_DIST_CHECK = os.path.join(os.path.dirname(__file__), "frontend/dist")
|
| 242 |
+
if not os.path.isdir(FRONTEND_DIST_CHECK):
|
| 243 |
+
FRONTEND_DIST_CHECK = os.path.abspath(os.path.join(os.path.dirname(__file__), "../frontend/dist"))
|
| 244 |
+
|
| 245 |
+
for sample_dir in ["cyto", "colpo", "histo"]:
|
| 246 |
+
sample_path = os.path.join(FRONTEND_DIST_CHECK, sample_dir)
|
| 247 |
+
if os.path.isdir(sample_path):
|
| 248 |
+
app.mount(f"/{sample_dir}", StaticFiles(directory=sample_path), name=sample_dir)
|
| 249 |
+
print(f"✅ Mounted /{sample_dir} from {sample_path}")
|
| 250 |
+
else:
|
| 251 |
+
print(f"⚠️ Sample directory not found: {sample_path}")
|
| 252 |
+
|
| 253 |
+
# Mount other static assets (logos, banners) from dist root
|
| 254 |
+
for static_file in ["banner.jpeg", "white_logo.png", "black_logo.png", "manalife_LOGO.jpg"]:
|
| 255 |
+
static_path = os.path.join(FRONTEND_DIST_CHECK, static_file)
|
| 256 |
+
if os.path.isfile(static_path):
|
| 257 |
+
print(f"✅ Static file available: /{static_file}")
|
| 258 |
+
|
| 259 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 260 |
|
| 261 |
# =====================================================
|
| 262 |
+
|
| 263 |
+
# MODEL LOADS
|
| 264 |
+
|
| 265 |
# =====================================================
|
| 266 |
+
|
| 267 |
print("🔹 Loading YOLO model...")
|
| 268 |
yolo_model = YOLO("best2.pt")
|
| 269 |
|
|
|
|
|
|
|
|
|
|
| 270 |
print("🔹 Loading MWT model...")
|
| 271 |
mwt_model = create_model(num_classes=2).to(device)
|
| 272 |
mwt_model.load_state_dict(torch.load("MWTclass2.pth", map_location=device))
|
| 273 |
mwt_model.eval()
|
| 274 |
+
mwt_class_names = ["Negative", "Positive"]
|
| 275 |
|
|
|
|
|
|
|
|
|
|
| 276 |
print("🔹 Loading CIN model...")
|
| 277 |
+
try:
|
| 278 |
+
clf = joblib.load("logistic_regression_model.pkl")
|
| 279 |
+
except Exception as e:
|
| 280 |
+
print(f"⚠️ CIN classifier not available (logistic_regression_model.pkl missing or invalid): {e}")
|
| 281 |
+
clf = None
|
| 282 |
+
|
| 283 |
yolo_colposcopy = YOLO("yolo_colposcopy.pt")
|
| 284 |
|
| 285 |
+
# =====================================================
|
| 286 |
+
|
| 287 |
+
# RESNET FEATURE EXTRACTORS FOR CIN
|
| 288 |
+
|
| 289 |
+
# =====================================================
|
| 290 |
+
|
| 291 |
def build_resnet(model_name="resnet50"):
|
| 292 |
if model_name == "resnet50":
|
| 293 |
model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
|
|
|
|
| 300 |
nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool),
|
| 301 |
model.layer1, model.layer2, model.layer3, model.layer4,
|
| 302 |
)
|
|
|
|
| 303 |
gap = nn.AdaptiveAvgPool2d((1, 1))
|
| 304 |
gmp = nn.AdaptiveMaxPool2d((1, 1))
|
| 305 |
resnet50_blocks = build_resnet("resnet50")
|
|
|
|
| 307 |
resnet152_blocks = build_resnet("resnet152")
|
| 308 |
|
| 309 |
transform = transforms.Compose([
|
| 310 |
+
transforms.ToPILImage(),
|
| 311 |
+
transforms.Resize((224, 224)),
|
| 312 |
+
transforms.ToTensor(),
|
| 313 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 314 |
+
std=[0.229, 0.224, 0.225]),
|
| 315 |
])
|
| 316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
|
|
|
|
|
|
|
|
|
|
| 318 |
def preprocess_for_mwt(image_np):
|
| 319 |
img = cv2.resize(image_np, (224, 224))
|
| 320 |
img = Augmentations.Normalization((0, 1))(img)
|
|
|
|
| 337 |
p3 = gap(f3).view(-1)
|
| 338 |
p4 = gap(f4).view(-1)
|
| 339 |
p5 = gap(f5).view(-1)
|
| 340 |
+
return torch.cat([p1, p2, p3, p4, p5], dim=0).cpu().numpy()
|
| 341 |
+
|
| 342 |
+
# =====================================================
|
| 343 |
+
# Model 4: Histopathology Classifier (TensorFlow)
|
| 344 |
+
# =====================================================
|
| 345 |
+
print("🔹 Attempting to load Breast Cancer Histopathology model...")
|
| 346 |
+
|
| 347 |
+
try:
|
| 348 |
+
classifier = BreastCancerClassifier(fine_tune=False)
|
| 349 |
+
|
| 350 |
+
# Safely handle Hugging Face token auth
|
| 351 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 352 |
+
if hf_token:
|
| 353 |
+
if classifier.authenticate_huggingface():
|
| 354 |
+
print("✅ Hugging Face authentication successful.")
|
| 355 |
+
else:
|
| 356 |
+
print("⚠️ Warning: Hugging Face authentication failed, using local model only.")
|
| 357 |
+
else:
|
| 358 |
+
print("⚠️ HF_TOKEN not found in environment — skipping authentication.")
|
| 359 |
+
|
| 360 |
+
# Load Path Foundation model
|
| 361 |
+
if classifier.load_path_foundation():
|
| 362 |
+
print("✅ Loaded Path Foundation base model.")
|
| 363 |
+
else:
|
| 364 |
+
print("⚠️ Could not load Path Foundation base model, continuing with local weights only.")
|
| 365 |
+
|
| 366 |
+
# Load trained histopathology model
|
| 367 |
+
model_path = "histopathology_trained_model.keras"
|
| 368 |
+
if os.path.exists(model_path):
|
| 369 |
+
classifier.model = tf.keras.models.load_model(model_path)
|
| 370 |
+
print(f"✅ Loaded local histopathology model: {model_path}")
|
| 371 |
+
else:
|
| 372 |
+
print(f"⚠️ Model file not found: {model_path}")
|
| 373 |
+
|
| 374 |
+
except Exception as e:
|
| 375 |
+
classifier = None
|
| 376 |
+
print(f"❌ Error initializing histopathology model: {e}")
|
| 377 |
+
|
| 378 |
+
def predict_histopathology(image):
|
| 379 |
+
if classifier is None:
|
| 380 |
+
return {"error": "Histopathology model not available."}
|
| 381 |
+
|
| 382 |
+
try:
|
| 383 |
+
if image.mode != "RGB":
|
| 384 |
+
image = image.convert("RGB")
|
| 385 |
+
image = image.resize((224, 224))
|
| 386 |
+
img_array = np.expand_dims(np.array(image).astype("float32") / 255.0, axis=0)
|
| 387 |
+
embeddings = classifier.extract_embeddings(img_array)
|
| 388 |
+
prediction_proba = classifier.model.predict(embeddings, verbose=0)[0]
|
| 389 |
+
predicted_class = int(np.argmax(prediction_proba))
|
| 390 |
+
class_names = ["Benign", "Malignant"]
|
| 391 |
+
|
| 392 |
+
# Return confidence as dictionary with both class probabilities (like MWT/CIN)
|
| 393 |
+
confidences = {class_names[i]: float(prediction_proba[i]) for i in range(len(class_names))}
|
| 394 |
+
avg_confidence = float(np.max(prediction_proba)) * 100
|
| 395 |
+
|
| 396 |
+
return {
|
| 397 |
+
"model_used": "Histopathology Classifier",
|
| 398 |
+
"prediction": class_names[predicted_class],
|
| 399 |
+
"confidence": confidences,
|
| 400 |
+
"summary": {
|
| 401 |
+
"avg_confidence": round(avg_confidence, 2),
|
| 402 |
+
"ai_interpretation": f"Histopathological analysis indicates {class_names[predicted_class].lower()} tissue with {avg_confidence:.1f}% confidence.",
|
| 403 |
+
},
|
| 404 |
}
|
| 405 |
+
except Exception as e:
|
| 406 |
+
return {"error": f"Histopathology prediction failed: {e}"}
|
| 407 |
+
|
| 408 |
|
| 409 |
# =====================================================
|
| 410 |
+
|
| 411 |
+
# MAIN ENDPOINT
|
| 412 |
+
|
| 413 |
# =====================================================
|
| 414 |
+
|
| 415 |
+
|
| 416 |
@app.post("/predict/")
|
| 417 |
async def predict(model_name: str = Form(...), file: UploadFile = File(...)):
|
| 418 |
+
print(f"Received prediction request - model: {model_name}, file: {file.filename}")
|
| 419 |
+
|
| 420 |
+
# Validate model name
|
| 421 |
+
if model_name not in ["yolo", "mwt", "cin", "histopathology"]:
|
| 422 |
+
return JSONResponse(
|
| 423 |
+
content={
|
| 424 |
+
"error": f"Invalid model_name: {model_name}. Must be one of: yolo, mwt, cin, histopathology"
|
| 425 |
+
},
|
| 426 |
+
status_code=400
|
| 427 |
+
)
|
| 428 |
+
|
| 429 |
+
# Validate and read file
|
| 430 |
+
if not file.filename:
|
| 431 |
+
return JSONResponse(
|
| 432 |
+
content={"error": "No file provided"},
|
| 433 |
+
status_code=400
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
contents = await file.read()
|
| 437 |
+
if len(contents) == 0:
|
| 438 |
+
return JSONResponse(
|
| 439 |
+
content={"error": "Empty file provided"},
|
| 440 |
+
status_code=400
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
# Attempt to open and validate image
|
| 444 |
+
try:
|
| 445 |
+
image = PILImage.open(BytesIO(contents)).convert("RGB")
|
| 446 |
+
image_np = np.array(image)
|
| 447 |
+
if image_np.size == 0:
|
| 448 |
+
raise ValueError("Empty image array")
|
| 449 |
+
print(f"Successfully loaded image, shape: {image_np.shape}")
|
| 450 |
+
except Exception as e:
|
| 451 |
+
return JSONResponse(
|
| 452 |
+
content={"error": f"Invalid image file: {str(e)}"},
|
| 453 |
+
status_code=400
|
| 454 |
+
)
|
| 455 |
|
| 456 |
if model_name == "yolo":
|
| 457 |
results = yolo_model(image)
|
| 458 |
detections_json = results[0].to_json()
|
| 459 |
detections = json.loads(detections_json)
|
| 460 |
+
|
| 461 |
+
abnormal_cells = sum(1 for d in detections if d["name"] == "abnormal")
|
| 462 |
+
normal_cells = sum(1 for d in detections if d["name"] == "normal")
|
| 463 |
+
avg_confidence = np.mean([d.get("confidence", 0) for d in detections]) * 100 if detections else 0
|
| 464 |
+
|
| 465 |
+
ai_summary = generate_ai_summary(abnormal_cells, normal_cells, avg_confidence)
|
| 466 |
+
|
| 467 |
output_filename = f"detected_{uuid.uuid4().hex[:8]}.jpg"
|
| 468 |
+
output_path = os.path.join(IMAGES_DIR, output_filename)
|
| 469 |
results[0].save(filename=output_path)
|
| 470 |
+
|
| 471 |
return {
|
| 472 |
"model_used": "YOLO Detection",
|
| 473 |
"detections": detections,
|
| 474 |
+
"annotated_image_url": f"/outputs/images/{output_filename}",
|
| 475 |
+
"summary": {
|
| 476 |
+
"abnormal_cells": abnormal_cells,
|
| 477 |
+
"normal_cells": normal_cells,
|
| 478 |
+
"avg_confidence": round(float(avg_confidence), 2),
|
| 479 |
+
"ai_interpretation": ai_summary,
|
| 480 |
+
},
|
| 481 |
}
|
| 482 |
|
| 483 |
elif model_name == "mwt":
|
|
|
|
| 486 |
output = mwt_model(tensor.to(device)).cpu()
|
| 487 |
probs = torch.softmax(output, dim=1)[0]
|
| 488 |
confidences = {mwt_class_names[i]: float(probs[i]) for i in range(2)}
|
| 489 |
+
predicted_label = mwt_class_names[int(torch.argmax(probs).item())]
|
| 490 |
+
# Average / primary confidence for display
|
| 491 |
+
avg_confidence = float(torch.max(probs).item()) * 100
|
| 492 |
+
|
| 493 |
+
# Generate a brief AI interpretation using the Mistral client (if available)
|
| 494 |
+
ai_interp = generate_mwt_summary(predicted_label, confidences, avg_confidence)
|
| 495 |
+
|
| 496 |
+
return {
|
| 497 |
+
"model_used": "MWT Classifier",
|
| 498 |
+
"prediction": predicted_label,
|
| 499 |
+
"confidence": confidences,
|
| 500 |
+
"summary": {
|
| 501 |
+
"avg_confidence": round(avg_confidence, 2),
|
| 502 |
+
"ai_interpretation": ai_interp,
|
| 503 |
+
},
|
| 504 |
+
}
|
| 505 |
|
| 506 |
elif model_name == "cin":
|
| 507 |
+
if clf is None:
|
| 508 |
+
return JSONResponse(
|
| 509 |
+
content={"error": "CIN classifier not available on server."},
|
| 510 |
+
status_code=503,
|
| 511 |
+
)
|
| 512 |
nparr = np.frombuffer(contents, np.uint8)
|
| 513 |
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
| 514 |
results = yolo_colposcopy.predict(source=img, conf=0.7, save=False, verbose=False)
|
| 515 |
if len(results[0].boxes) == 0:
|
| 516 |
return {"error": "No cervix detected"}
|
| 517 |
+
|
| 518 |
x1, y1, x2, y2 = map(int, results[0].boxes.xyxy[0].cpu().numpy())
|
| 519 |
crop = img[y1:y2, x1:x2]
|
| 520 |
crop = cv2.resize(crop, (224, 224))
|
|
|
|
| 526 |
X_scaled = MinMaxScaler().fit_transform(features)
|
| 527 |
pred = clf.predict(X_scaled)[0]
|
| 528 |
proba = clf.predict_proba(X_scaled)[0]
|
| 529 |
+
# Get actual number of classes from model output
|
| 530 |
+
classes = ["Low-grade", "High-grade"] # Binary CIN classification
|
| 531 |
predicted_label = classes[pred]
|
| 532 |
confidences = {classes[i]: float(proba[i]) for i in range(len(classes))}
|
| 533 |
+
|
| 534 |
+
# Map to more detailed classification based on confidence
|
| 535 |
+
if predicted_label == "High-grade" and confidences["High-grade"] > 0.8:
|
| 536 |
+
detailed_class = "CIN3"
|
| 537 |
+
elif predicted_label == "High-grade":
|
| 538 |
+
detailed_class = "CIN2"
|
| 539 |
+
else:
|
| 540 |
+
detailed_class = "CIN1"
|
| 541 |
+
|
| 542 |
+
# Average / primary confidence for display
|
| 543 |
+
avg_confidence = float(np.max(proba)) * 100
|
| 544 |
+
|
| 545 |
+
# Generate a brief AI interpretation using the Mistral client (if available)
|
| 546 |
+
ai_interp = generate_cin_summary(predicted_label, confidences, avg_confidence)
|
| 547 |
+
|
| 548 |
return {
|
| 549 |
"model_used": "CIN Classifier",
|
| 550 |
+
"prediction": detailed_class,
|
| 551 |
+
"grade": predicted_label,
|
| 552 |
+
"confidence": confidences,
|
| 553 |
+
"summary": {
|
| 554 |
+
"avg_confidence": round(avg_confidence, 2),
|
| 555 |
+
"ai_interpretation": ai_interp,
|
| 556 |
+
},
|
| 557 |
}
|
|
|
|
| 558 |
elif model_name == "histopathology":
|
| 559 |
+
result = predict_histopathology(image)
|
| 560 |
+
return result
|
| 561 |
+
|
| 562 |
|
| 563 |
else:
|
| 564 |
return JSONResponse(content={"error": "Invalid model name"}, status_code=400)
|
| 565 |
|
| 566 |
+
# =====================================================
|
| 567 |
+
|
| 568 |
+
# ROUTES
|
| 569 |
+
|
| 570 |
+
# =====================================================
|
| 571 |
+
|
| 572 |
+
def create_designed_pdf(pdf_path, report_data, analysis_summary_json):
|
| 573 |
+
doc = SimpleDocTemplate(pdf_path, pagesize=letter,
|
| 574 |
+
rightMargin=72, leftMargin=72,
|
| 575 |
+
topMargin=72, bottomMargin=18)
|
| 576 |
+
styles = getSampleStyleSheet()
|
| 577 |
+
story = []
|
| 578 |
+
|
| 579 |
+
styles.add(ParagraphStyle(name='Title', fontSize=20, fontName='Helvetica-Bold', alignment=TA_CENTER, textColor=navy))
|
| 580 |
+
styles.add(ParagraphStyle(name='Section', fontSize=14, fontName='Helvetica-Bold', spaceBefore=10, spaceAfter=6))
|
| 581 |
+
styles.add(ParagraphStyle(name='NormalSmall', fontSize=10, leading=12))
|
| 582 |
+
styles.add(ParagraphStyle(name='Heading', fontSize=16, fontName='Helvetica-Bold', textColor=navy, spaceBefore=6, spaceAfter=4))
|
| 583 |
+
|
| 584 |
+
patient = report_data['patient']
|
| 585 |
+
analysis = report_data.get('analysis', {})
|
| 586 |
+
|
| 587 |
+
# Safely parse analysis_summary_json
|
| 588 |
+
try:
|
| 589 |
+
ai_summary = json.loads(analysis_summary_json) if analysis_summary_json else {}
|
| 590 |
+
except (json.JSONDecodeError, TypeError):
|
| 591 |
+
ai_summary = {}
|
| 592 |
+
|
| 593 |
+
# Determine report type based on model used
|
| 594 |
+
model_used = ai_summary.get('model_used', '')
|
| 595 |
+
if 'YOLO' in model_used or 'yolo' in str(analysis.get('id', '')).lower():
|
| 596 |
+
report_type = "CYTOLOGY"
|
| 597 |
+
report_title = "Cytology Report"
|
| 598 |
+
elif 'CIN' in model_used or 'cin' in str(analysis.get('id', '')).lower() or 'colpo' in str(analysis.get('id', '')).lower():
|
| 599 |
+
report_type = "COLPOSCOPY"
|
| 600 |
+
report_title = "Colposcopy Report"
|
| 601 |
+
elif 'histo' in str(analysis.get('id', '')).lower() or 'histopathology' in model_used.lower():
|
| 602 |
+
report_type = "HISTOPATHOLOGY"
|
| 603 |
+
report_title = "Histopathology Report"
|
| 604 |
+
else:
|
| 605 |
+
report_type = "CYTOLOGY"
|
| 606 |
+
report_title = "Medical Analysis Report"
|
| 607 |
+
|
| 608 |
+
# Header
|
| 609 |
+
story.append(Paragraph("MANALIFE AI", styles['Title']))
|
| 610 |
+
story.append(Paragraph("Advanced Medical Analysis", styles['NormalSmall']))
|
| 611 |
+
story.append(Spacer(1, 0.3*inch))
|
| 612 |
+
story.append(Paragraph(f"MEDICAL ANALYSIS REPORT OF {report_type}", styles['Heading']))
|
| 613 |
+
story.append(Paragraph(report_title, styles['Section']))
|
| 614 |
+
story.append(Spacer(1, 0.2*inch))
|
| 615 |
+
|
| 616 |
+
# Report ID and Date
|
| 617 |
+
story.append(Paragraph(f"<b>Report ID:</b> {report_data.get('report_id', 'N/A')}", styles['NormalSmall']))
|
| 618 |
+
story.append(Paragraph(f"<b>Generated:</b> {datetime.datetime.now().strftime('%b %d, %Y, %I:%M %p')}", styles['NormalSmall']))
|
| 619 |
+
story.append(Spacer(1, 0.2*inch))
|
| 620 |
+
|
| 621 |
+
# Patient Information Section
|
| 622 |
+
story.append(Paragraph("Patient Information", styles['Section']))
|
| 623 |
+
story.append(Paragraph(f"<b>Patient ID:</b> {patient.get('id', 'N/A')}", styles['NormalSmall']))
|
| 624 |
+
story.append(Paragraph(f"<b>Exam Date:</b> {patient.get('exam_date', 'N/A')}", styles['NormalSmall']))
|
| 625 |
+
story.append(Paragraph(f"<b>Physician:</b> {patient.get('physician', 'N/A')}", styles['NormalSmall']))
|
| 626 |
+
story.append(Paragraph(f"<b>Facility:</b> {patient.get('facility', 'N/A')}", styles['NormalSmall']))
|
| 627 |
+
story.append(Spacer(1, 0.2*inch))
|
| 628 |
+
|
| 629 |
+
# Sample Information Section
|
| 630 |
+
story.append(Paragraph("Sample Information", styles['Section']))
|
| 631 |
+
story.append(Paragraph(f"<b>Specimen Type:</b> {patient.get('specimen_type', 'Cervical Cytology')}", styles['NormalSmall']))
|
| 632 |
+
story.append(Paragraph(f"<b>Clinical History:</b> {patient.get('clinical_history', 'N/A')}", styles['NormalSmall']))
|
| 633 |
+
story.append(Spacer(1, 0.2*inch))
|
| 634 |
+
|
| 635 |
+
# AI Analysis Section
|
| 636 |
+
story.append(Paragraph("AI-ASSISTED ANALYSIS", styles['Section']))
|
| 637 |
+
story.append(Paragraph("<b>System:</b> Manalife AI System — Automated Analysis", styles['NormalSmall']))
|
| 638 |
+
story.append(Paragraph(f"<b>Confidence Score:</b> {ai_summary.get('avg_confidence', 'N/A')}%", styles['NormalSmall']))
|
| 639 |
+
|
| 640 |
+
# Add metrics based on report type
|
| 641 |
+
if report_type == "HISTOPATHOLOGY":
|
| 642 |
+
# For histopathology, show Benign/Malignant confidence
|
| 643 |
+
confidence_dict = ai_summary.get('confidence', {})
|
| 644 |
+
if isinstance(confidence_dict, dict):
|
| 645 |
+
benign_conf = confidence_dict.get('Benign', 0) * 100
|
| 646 |
+
malignant_conf = confidence_dict.get('Malignant', 0) * 100
|
| 647 |
+
story.append(Paragraph(f"<b>Benign Confidence:</b> {benign_conf:.2f}%", styles['NormalSmall']))
|
| 648 |
+
story.append(Paragraph(f"<b>Malignant Confidence:</b> {malignant_conf:.2f}%", styles['NormalSmall']))
|
| 649 |
+
elif report_type == "CYTOLOGY":
|
| 650 |
+
# For cytology (YOLO), show abnormal/normal cells
|
| 651 |
+
if 'abnormal_cells' in ai_summary:
|
| 652 |
+
story.append(Paragraph(f"<b>Abnormal Cells:</b> {ai_summary.get('abnormal_cells', 'N/A')}", styles['NormalSmall']))
|
| 653 |
+
if 'normal_cells' in ai_summary:
|
| 654 |
+
story.append(Paragraph(f"<b>Normal Cells:</b> {ai_summary.get('normal_cells', 'N/A')}", styles['NormalSmall']))
|
| 655 |
+
else:
|
| 656 |
+
# For CIN/Colposcopy, show class confidences
|
| 657 |
+
confidence_dict = ai_summary.get('confidence', {})
|
| 658 |
+
if isinstance(confidence_dict, dict):
|
| 659 |
+
for cls, val in confidence_dict.items():
|
| 660 |
+
conf_pct = val * 100 if isinstance(val, (int, float)) else 0
|
| 661 |
+
story.append(Paragraph(f"<b>{cls} Confidence:</b> {conf_pct:.2f}%", styles['NormalSmall']))
|
| 662 |
+
|
| 663 |
+
story.append(Spacer(1, 0.1*inch))
|
| 664 |
+
story.append(Paragraph("<b>AI Interpretation:</b>", styles['NormalSmall']))
|
| 665 |
+
story.append(Paragraph(ai_summary.get('ai_interpretation', 'Not available.'), styles['NormalSmall']))
|
| 666 |
+
story.append(Spacer(1, 0.2*inch))
|
| 667 |
+
|
| 668 |
+
# Doctor's Notes
|
| 669 |
+
story.append(Paragraph("Doctor's Notes", styles['Section']))
|
| 670 |
+
story.append(Paragraph(report_data.get('doctor_notes') or 'No additional notes provided.', styles['NormalSmall']))
|
| 671 |
+
story.append(Spacer(1, 0.2*inch))
|
| 672 |
+
|
| 673 |
+
# Recommendations
|
| 674 |
+
story.append(Paragraph("RECOMMENDATIONS", styles['Section']))
|
| 675 |
+
story.append(Paragraph("Continue routine screening as per standard guidelines. Follow up as directed by your physician.", styles['NormalSmall']))
|
| 676 |
+
story.append(Spacer(1, 0.3*inch))
|
| 677 |
+
|
| 678 |
+
# Signatures
|
| 679 |
+
story.append(Paragraph("Signatures", styles['Section']))
|
| 680 |
+
story.append(Paragraph("Dr. Emily Roberts, MD (Cytopathologist)", styles['NormalSmall']))
|
| 681 |
+
story.append(Paragraph("Dr. James Wilson, MD (Pathologist)", styles['NormalSmall']))
|
| 682 |
+
story.append(Spacer(1, 0.1*inch))
|
| 683 |
+
story.append(Paragraph(f"Generated on: {datetime.datetime.now().strftime('%b %d, %Y, %I:%M %p')}", styles['NormalSmall']))
|
| 684 |
+
|
| 685 |
+
doc.build(story)
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
|
| 689 |
+
@app.post("/reports/")
|
| 690 |
+
async def generate_report(
|
| 691 |
+
patient_id: str = Form(...),
|
| 692 |
+
exam_date: str = Form(...),
|
| 693 |
+
metadata: str = Form(...),
|
| 694 |
+
notes: str = Form(None),
|
| 695 |
+
analysis_id: str = Form(None),
|
| 696 |
+
analysis_summary: str = Form(None),
|
| 697 |
+
):
|
| 698 |
+
"""Generate a structured medical report from analysis results and metadata."""
|
| 699 |
+
try:
|
| 700 |
+
# Create reports directory if it doesn't exist
|
| 701 |
+
reports_dir = os.path.join(OUTPUT_DIR, "reports")
|
| 702 |
+
os.makedirs(reports_dir, exist_ok=True)
|
| 703 |
+
|
| 704 |
+
# Generate unique report ID
|
| 705 |
+
report_id = f"{patient_id}_{uuid.uuid4().hex[:8]}"
|
| 706 |
+
report_dir = os.path.join(reports_dir, report_id)
|
| 707 |
+
os.makedirs(report_dir, exist_ok=True)
|
| 708 |
+
|
| 709 |
+
# Parse metadata
|
| 710 |
+
metadata_dict = json.loads(metadata)
|
| 711 |
+
|
| 712 |
+
# Get analysis results - assuming stored in memory or retrievable
|
| 713 |
+
# TODO: Implement analysis results storage/retrieval
|
| 714 |
+
|
| 715 |
+
# Construct report data
|
| 716 |
+
report_data = {
|
| 717 |
+
"report_id": report_id,
|
| 718 |
+
"generated_at": datetime.datetime.now().isoformat(),
|
| 719 |
+
"patient": {
|
| 720 |
+
"id": patient_id,
|
| 721 |
+
"exam_date": exam_date,
|
| 722 |
+
**metadata_dict
|
| 723 |
+
},
|
| 724 |
+
"analysis": {
|
| 725 |
+
"id": analysis_id,
|
| 726 |
+
# If the analysis_id is actually an annotated image URL, store it for report embedding
|
| 727 |
+
"annotated_image_url": analysis_id,
|
| 728 |
+
# TODO: Add actual analysis results
|
| 729 |
+
},
|
| 730 |
+
"doctor_notes": notes
|
| 731 |
+
}
|
| 732 |
+
|
| 733 |
+
# Save report data
|
| 734 |
+
report_json = os.path.join(report_dir, "report.json")
|
| 735 |
+
with open(report_json, "w", encoding="utf-8") as f:
|
| 736 |
+
json.dump(report_data, f, indent=2, ensure_ascii=False)
|
| 737 |
+
|
| 738 |
+
# Attempt to create a PDF version if reportlab is available
|
| 739 |
+
pdf_url = None
|
| 740 |
+
if REPORTLAB_AVAILABLE:
|
| 741 |
+
try:
|
| 742 |
+
pdf_path = os.path.join(report_dir, "report.pdf")
|
| 743 |
+
create_designed_pdf(pdf_path, report_data, analysis_summary)
|
| 744 |
+
pdf_url = f"/outputs/reports/{report_id}/report.pdf"
|
| 745 |
+
except Exception as e:
|
| 746 |
+
print(f"Error creating designed PDF: {e}")
|
| 747 |
+
pdf_url = None
|
| 748 |
+
|
| 749 |
+
# Parse analysis_summary to get AI results
|
| 750 |
+
try:
|
| 751 |
+
ai_summary = json.loads(analysis_summary) if analysis_summary else {}
|
| 752 |
+
except (json.JSONDecodeError, TypeError):
|
| 753 |
+
ai_summary = {}
|
| 754 |
+
|
| 755 |
+
# Determine report type based on analysis summary or model used
|
| 756 |
+
model_used = ai_summary.get('model_used', '')
|
| 757 |
+
if 'YOLO' in model_used or 'yolo' in str(analysis_id).lower():
|
| 758 |
+
report_type = "Cytology"
|
| 759 |
+
report_title = "Cytology Report"
|
| 760 |
+
elif 'CIN' in model_used or 'cin' in str(analysis_id).lower() or 'colpo' in str(analysis_id).lower():
|
| 761 |
+
report_type = "Colposcopy"
|
| 762 |
+
report_title = "Colposcopy Report"
|
| 763 |
+
elif 'histo' in str(analysis_id).lower() or 'histopathology' in model_used.lower():
|
| 764 |
+
report_type = "Histopathology"
|
| 765 |
+
report_title = "Histopathology Report"
|
| 766 |
+
else:
|
| 767 |
+
# Default fallback
|
| 768 |
+
report_type = "Cytology"
|
| 769 |
+
report_title = "Medical Analysis Report"
|
| 770 |
+
|
| 771 |
+
# Build analysis metrics HTML based on report type
|
| 772 |
+
if report_type == "Histopathology":
|
| 773 |
+
# For histopathology, show Benign/Malignant confidence from the confidence dict
|
| 774 |
+
confidence_dict = ai_summary.get('confidence', {})
|
| 775 |
+
benign_conf = confidence_dict.get('Benign', 0) * 100 if isinstance(confidence_dict, dict) else 0
|
| 776 |
+
malignant_conf = confidence_dict.get('Malignant', 0) * 100 if isinstance(confidence_dict, dict) else 0
|
| 777 |
+
|
| 778 |
+
analysis_metrics_html = f"""
|
| 779 |
+
<tr><th>System</th><td>Manalife AI System — Automated Analysis</td></tr>
|
| 780 |
+
<tr><th>Confidence Score</th><td>{ai_summary.get('avg_confidence', 'N/A')}%</td></tr>
|
| 781 |
+
<tr><th>Benign Confidence</th><td>{benign_conf:.2f}%</td></tr>
|
| 782 |
+
<tr><th>Malignant Confidence</th><td>{malignant_conf:.2f}%</td></tr>
|
| 783 |
+
"""
|
| 784 |
+
elif report_type == "Cytology":
|
| 785 |
+
# For cytology (YOLO), show abnormal/normal cells
|
| 786 |
+
analysis_metrics_html = f"""
|
| 787 |
+
<tr><th>System</th><td>Manalife AI System — Automated Analysis</td></tr>
|
| 788 |
+
<tr><th>Confidence Score</th><td>{ai_summary.get('avg_confidence', 'N/A')}%</td></tr>
|
| 789 |
+
<tr><th>Abnormal Cells</th><td>{ai_summary.get('abnormal_cells', 'N/A')}</td></tr>
|
| 790 |
+
<tr><th>Normal Cells</th><td>{ai_summary.get('normal_cells', 'N/A')}</td></tr>
|
| 791 |
+
"""
|
| 792 |
+
else:
|
| 793 |
+
# For CIN/Colposcopy or other models, show generic confidence
|
| 794 |
+
confidence_dict = ai_summary.get('confidence', {})
|
| 795 |
+
confidence_rows = ""
|
| 796 |
+
if isinstance(confidence_dict, dict):
|
| 797 |
+
for cls, val in confidence_dict.items():
|
| 798 |
+
conf_pct = val * 100 if isinstance(val, (int, float)) else 0
|
| 799 |
+
confidence_rows += f"<tr><th>{cls} Confidence</th><td>{conf_pct:.2f}%</td></tr>\n "
|
| 800 |
+
|
| 801 |
+
analysis_metrics_html = f"""
|
| 802 |
+
<tr><th>System</th><td>Manalife AI System — Automated Analysis</td></tr>
|
| 803 |
+
<tr><th>Confidence Score</th><td>{ai_summary.get('avg_confidence', 'N/A')}%</td></tr>
|
| 804 |
+
{confidence_rows}
|
| 805 |
+
"""
|
| 806 |
+
|
| 807 |
+
# Build final HTML including download links and embedded annotated image
|
| 808 |
+
report_html = os.path.join(report_dir, "report.html")
|
| 809 |
+
json_url = f"/outputs/reports/{report_id}/report.json"
|
| 810 |
+
html_url = f"/outputs/reports/{report_id}/report.html"
|
| 811 |
+
annotated_img = report_data.get("analysis", {}).get("annotated_image_url") or ""
|
| 812 |
+
|
| 813 |
+
# Get base URL for the annotated image (if it's a relative path)
|
| 814 |
+
annotated_img_full = f"http://localhost:8000{annotated_img}" if annotated_img and annotated_img.startswith('/') else annotated_img
|
| 815 |
+
|
| 816 |
+
download_pdf_btn = f'<a href="{pdf_url}" download style="text-decoration:none"><button class="btn-secondary">Download PDF</button></a>' if pdf_url else ''
|
| 817 |
+
|
| 818 |
+
# Format generated time
|
| 819 |
+
generated_time = datetime.datetime.now().strftime('%b %d, %Y, %I:%M %p')
|
| 820 |
+
|
| 821 |
+
html_content = f"""<!doctype html>
|
| 822 |
+
<html lang="en">
|
| 823 |
+
<head>
|
| 824 |
+
<meta charset="utf-8" />
|
| 825 |
+
<meta name="viewport" content="width=device-width,initial-scale=1" />
|
| 826 |
+
<title>Medical Analysis Report — Manalife AI</title>
|
| 827 |
+
<style>
|
| 828 |
+
:root{{--bg:#f8fafc;--card:#ffffff;--muted:#6b7280;--accent:#0f172a}}
|
| 829 |
+
body{{font-family:Inter,ui-sans-serif,system-ui,-apple-system,"Segoe UI",Roboto,"Helvetica Neue",Arial;margin:0;background:var(--bg);color:var(--accent);line-height:1.45}}
|
| 830 |
+
.container{{max-width:900px;margin:36px auto;padding:20px}}
|
| 831 |
+
header{{display:flex;align-items:center;gap:16px}}
|
| 832 |
+
.brand{{display:flex;flex-direction:column}}
|
| 833 |
+
h1{{margin:0;font-size:20px}}
|
| 834 |
+
.sub{{color:var(--muted);font-size:13px}}
|
| 835 |
+
.card{{background:var(--card);box-shadow:0 6px 18px rgba(15,23,42,0.06);border-radius:12px;padding:20px;margin-top:18px}}
|
| 836 |
+
.grid{{display:grid;grid-template-columns:1fr 1fr;gap:12px}}
|
| 837 |
+
.section-title{{font-weight:600;margin-top:8px}}
|
| 838 |
+
table{{width:100%;border-collapse:collapse;margin-top:8px}}
|
| 839 |
+
td,th{{padding:8px;border-bottom:1px dashed #e6e9ef;text-align:left;font-size:14px}}
|
| 840 |
+
.full{{grid-column:1/-1}}
|
| 841 |
+
.muted{{color:var(--muted);font-size:13px}}
|
| 842 |
+
.footer{{margin-top:20px;font-size:13px;color:var(--muted)}}
|
| 843 |
+
.pill{{background:#eef2ff;color:#1e3a8a;padding:6px 10px;border-radius:999px;font-weight:600;font-size:13px}}
|
| 844 |
+
@media (max-width:700px){{.grid{{grid-template-columns:1fr}}}}
|
| 845 |
+
.signatures{{display:flex;gap:20px;flex-wrap:wrap;margin-top:12px}}
|
| 846 |
+
.sig{{background:#fbfbfd;border:1px solid #f0f1f5;padding:10px;border-radius:8px;min-width:180px}}
|
| 847 |
+
.annotated-image{{max-width:100%;height:auto;border-radius:8px;margin-top:12px;border:1px solid #e6e9ef}}
|
| 848 |
+
.btn-primary{{padding:10px 14px;border-radius:8px;border:1px solid #2563eb;background:#2563eb;color:white;font-weight:700;cursor:pointer}}
|
| 849 |
+
.btn-secondary{{padding:10px 14px;border-radius:8px;border:1px solid #e6eefc;background:#eef2ff;font-weight:700;cursor:pointer}}
|
| 850 |
+
.actions-bar{{margin-top:12px;display:flex;gap:8px;flex-wrap:wrap}}
|
| 851 |
+
</style>
|
| 852 |
+
</head>
|
| 853 |
+
<body>
|
| 854 |
+
<div class="container">
|
| 855 |
+
<header>
|
| 856 |
+
<div>
|
| 857 |
+
<!-- Use the static logo from frontend public/ (copied to dist by Vite) -->
|
| 858 |
+
<img src="/manalife_LOGO.jpg" alt="Manalife Logo" width="64" height="64">
|
| 859 |
+
</div>
|
| 860 |
+
<div class="brand">
|
| 861 |
+
<h1>MANALIFE AI — Medical Analysis</h1>
|
| 862 |
+
<div class="sub">Advanced cytological colposcopy and histopathology reporting</div>
|
| 863 |
+
<div class="muted">[email protected] • +1 (555) 123-4567</div>
|
| 864 |
+
</div>
|
| 865 |
+
</header>
|
| 866 |
+
|
| 867 |
+
<div class="card">
|
| 868 |
+
<div style="display:flex;justify-content:space-between;align-items:center;gap:12px;flex-wrap:wrap">
|
| 869 |
+
<div>
|
| 870 |
+
<div class="muted">MEDICAL ANALYSIS REPORT OF {report_type.upper()}</div>
|
| 871 |
+
<h2 style="margin:6px 0 0 0">{report_title}</h2>
|
| 872 |
+
</div>
|
| 873 |
+
<div style="text-align:right">
|
| 874 |
+
<div class="pill">Report ID: {report_id}</div>
|
| 875 |
+
<div class="muted" style="margin-top:6px">Generated: {generated_time}</div>
|
| 876 |
+
</div>
|
| 877 |
+
</div>
|
| 878 |
+
|
| 879 |
+
<hr style="border:none;border-top:1px solid #eef2f6;margin:16px 0">
|
| 880 |
+
|
| 881 |
+
<div class="grid">
|
| 882 |
+
<div>
|
| 883 |
+
<div class="section-title">Patient Information</div>
|
| 884 |
+
<table>
|
| 885 |
+
<tr><th>Patient ID</th><td>{patient_id}</td></tr>
|
| 886 |
+
<tr><th>Exam Date</th><td>{exam_date}</td></tr>
|
| 887 |
+
<tr><th>Physician</th><td>{metadata_dict.get('physician', 'N/A')}</td></tr>
|
| 888 |
+
<tr><th>Facility</th><td>{metadata_dict.get('facility', 'N/A')}</td></tr>
|
| 889 |
+
</table>
|
| 890 |
+
</div>
|
| 891 |
+
|
| 892 |
+
<div>
|
| 893 |
+
<div class="section-title">Sample Information</div>
|
| 894 |
+
<table>
|
| 895 |
+
<tr><th>Specimen Type</th><td>{metadata_dict.get('specimen_type', 'N/A')}</td></tr>
|
| 896 |
+
<tr><th>Clinical History</th><td>{metadata_dict.get('clinical_history', 'N/A')}</td></tr>
|
| 897 |
+
<tr><th>Collected</th><td>{exam_date}</td></tr>
|
| 898 |
+
<tr><th>Reported</th><td>{generated_time}</td></tr>
|
| 899 |
+
</table>
|
| 900 |
+
</div>
|
| 901 |
+
|
| 902 |
+
<div class="full">
|
| 903 |
+
<div class="section-title">AI-Assisted Analysis</div>
|
| 904 |
+
<table>
|
| 905 |
+
{analysis_metrics_html}
|
| 906 |
+
</table>
|
| 907 |
+
<div style="margin-top:12px;padding:12px;background:#f8fafc;border-radius:8px;border-left:4px solid #2563eb">
|
| 908 |
+
<div style="font-weight:600;margin-bottom:6px">AI Interpretation:</div>
|
| 909 |
+
<div class="muted">{ai_summary.get('ai_interpretation', 'No AI interpretation available.')}</div>
|
| 910 |
+
</div>
|
| 911 |
+
</div>
|
| 912 |
+
|
| 913 |
+
{'<div class="full"><div class="section-title">Annotated Analysis Image</div><img src="' + annotated_img_full + '" class="annotated-image" alt="Annotated Analysis Result" /></div>' if annotated_img else ''}
|
| 914 |
+
|
| 915 |
+
<div class="full">
|
| 916 |
+
<div class="section-title">Doctor\'s Notes</div>
|
| 917 |
+
<p class="muted">{notes or 'No additional notes provided.'}</p>
|
| 918 |
+
</div>
|
| 919 |
+
|
| 920 |
+
<div class="full">
|
| 921 |
+
<div class="section-title">Recommendations</div>
|
| 922 |
+
<p class="muted">Continue routine screening as per standard guidelines. Follow up as directed by your physician.</p>
|
| 923 |
+
</div>
|
| 924 |
+
|
| 925 |
+
<div class="full">
|
| 926 |
+
<div class="section-title">Signatures</div>
|
| 927 |
+
<div class="signatures">
|
| 928 |
+
<div class="sig">
|
| 929 |
+
<div style="font-weight:700">Dr. Emily Roberts</div>
|
| 930 |
+
<div class="muted">MD, pathologist</div>
|
| 931 |
+
</div>
|
| 932 |
+
<div class="sig">
|
| 933 |
+
<div style="font-weight:700">Dr. James Wilson</div>
|
| 934 |
+
<div class="muted">MD, pathologist</div>
|
| 935 |
+
</div>
|
| 936 |
+
</div>
|
| 937 |
+
</div>
|
| 938 |
+
</div>
|
| 939 |
+
|
| 940 |
+
<div class="footer">
|
| 941 |
+
<div>AI System: Manalife AI — Automated Analysis</div>
|
| 942 |
+
<div style="margin-top:6px">Report generated: {report_data['generated_at']}</div>
|
| 943 |
+
</div>
|
| 944 |
+
</div>
|
| 945 |
+
|
| 946 |
+
<div class="actions-bar">
|
| 947 |
+
{download_pdf_btn}
|
| 948 |
+
<button class="btn-secondary" onclick="window.print()">Print Report</button>
|
| 949 |
+
</div>
|
| 950 |
+
</div>
|
| 951 |
+
</body>
|
| 952 |
+
</html>"""
|
| 953 |
+
|
| 954 |
+
with open(report_html, "w", encoding="utf-8") as f:
|
| 955 |
+
f.write(html_content)
|
| 956 |
+
|
| 957 |
+
return {
|
| 958 |
+
"report_id": report_id,
|
| 959 |
+
"json_url": json_url,
|
| 960 |
+
"html_url": html_url,
|
| 961 |
+
"pdf_url": pdf_url,
|
| 962 |
+
}
|
| 963 |
+
|
| 964 |
+
except Exception as e:
|
| 965 |
+
return JSONResponse(
|
| 966 |
+
content={"error": f"Failed to generate report: {str(e)}"},
|
| 967 |
+
status_code=500
|
| 968 |
+
)
|
| 969 |
+
|
| 970 |
+
@app.get("/reports/{report_id}")
|
| 971 |
+
async def get_report(report_id: str):
|
| 972 |
+
"""Fetch a generated report by ID."""
|
| 973 |
+
report_dir = os.path.join(OUTPUT_DIR, "reports", report_id)
|
| 974 |
+
report_json = os.path.join(report_dir, "report.json")
|
| 975 |
+
|
| 976 |
+
if not os.path.exists(report_json):
|
| 977 |
+
return JSONResponse(
|
| 978 |
+
content={"error": "Report not found"},
|
| 979 |
+
status_code=404
|
| 980 |
+
)
|
| 981 |
+
|
| 982 |
+
with open(report_json, "r") as f:
|
| 983 |
+
report_data = json.load(f)
|
| 984 |
+
|
| 985 |
+
return report_data
|
| 986 |
+
|
| 987 |
+
@app.get("/reports")
|
| 988 |
+
async def list_reports(patient_id: str = None):
|
| 989 |
+
"""List all generated reports, optionally filtered by patient ID."""
|
| 990 |
+
reports_dir = os.path.join(OUTPUT_DIR, "reports")
|
| 991 |
+
if not os.path.exists(reports_dir):
|
| 992 |
+
return {"reports": []}
|
| 993 |
+
|
| 994 |
+
reports = []
|
| 995 |
+
for report_id in os.listdir(reports_dir):
|
| 996 |
+
report_json = os.path.join(reports_dir, report_id, "report.json")
|
| 997 |
+
if os.path.exists(report_json):
|
| 998 |
+
with open(report_json, "r") as f:
|
| 999 |
+
report_data = json.load(f)
|
| 1000 |
+
if not patient_id or report_data["patient"]["id"] == patient_id:
|
| 1001 |
+
reports.append({
|
| 1002 |
+
"report_id": report_id,
|
| 1003 |
+
"patient_id": report_data["patient"]["id"],
|
| 1004 |
+
"exam_date": report_data["patient"]["exam_date"],
|
| 1005 |
+
"generated_at": report_data["generated_at"]
|
| 1006 |
+
})
|
| 1007 |
+
|
| 1008 |
+
return {"reports": sorted(reports, key=lambda r: r["generated_at"], reverse=True)}
|
| 1009 |
|
| 1010 |
@app.get("/models")
|
| 1011 |
def get_models():
|
| 1012 |
return {"available_models": ["yolo", "mwt", "cin", "histopathology"]}
|
| 1013 |
|
|
|
|
| 1014 |
@app.get("/health")
|
| 1015 |
def health():
|
| 1016 |
+
return {"message": "Pathora Medical Diagnostic API is running!"}
|
| 1017 |
+
|
| 1018 |
+
# FRONTEND
|
| 1019 |
+
|
| 1020 |
+
# =====================================================
|
| 1021 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1022 |
|
| 1023 |
+
# Serve frontend only if it has been built; avoid startup failure when dist/ is missing.
|
| 1024 |
+
FRONTEND_DIST = os.path.abspath(os.path.join(os.path.dirname(__file__), "../frontend/dist"))
|
| 1025 |
|
| 1026 |
+
# Check if frontend/dist exists in /app (Docker), otherwise check relative to script location
|
| 1027 |
+
if not os.path.isdir(FRONTEND_DIST):
|
| 1028 |
+
# Fallback for Docker: frontend is copied to ./frontend/dist during build
|
| 1029 |
+
FRONTEND_DIST = os.path.join(os.path.dirname(__file__), "frontend/dist")
|
| 1030 |
+
|
| 1031 |
+
ASSETS_DIR = os.path.join(FRONTEND_DIST, "assets")
|
| 1032 |
+
|
| 1033 |
+
if os.path.isdir(ASSETS_DIR):
|
| 1034 |
+
app.mount("/assets", StaticFiles(directory=ASSETS_DIR), name="assets")
|
| 1035 |
+
else:
|
| 1036 |
+
print("ℹ️ Frontend assets directory not found — skipping /assets mount.")
|
| 1037 |
|
| 1038 |
@app.get("/")
|
| 1039 |
async def serve_frontend():
|
| 1040 |
+
index_path = os.path.join(FRONTEND_DIST, "index.html")
|
| 1041 |
+
if os.path.isfile(index_path):
|
| 1042 |
+
return FileResponse(index_path)
|
| 1043 |
+
return JSONResponse({"message": "Backend is running. Frontend build not found."})
|
| 1044 |
+
|
| 1045 |
+
@app.get("/{file_path:path}")
|
| 1046 |
+
async def serve_static_files(file_path: str):
|
| 1047 |
+
"""Serve static files from frontend dist (images, logos, etc.)"""
|
| 1048 |
+
# Skip API routes
|
| 1049 |
+
if file_path.startswith(("predict", "reports", "models", "health", "outputs", "assets", "cyto", "colpo", "histo")):
|
| 1050 |
+
return JSONResponse({"error": "Not found"}, status_code=404)
|
| 1051 |
+
|
| 1052 |
+
# Try to serve file from dist root
|
| 1053 |
+
static_file = os.path.join(FRONTEND_DIST, file_path)
|
| 1054 |
+
if os.path.isfile(static_file):
|
| 1055 |
+
return FileResponse(static_file)
|
| 1056 |
+
|
| 1057 |
+
# Fallback to index.html for client-side routing
|
| 1058 |
+
index_path = os.path.join(FRONTEND_DIST, "index.html")
|
| 1059 |
+
if os.path.isfile(index_path):
|
| 1060 |
+
return FileResponse(index_path)
|
| 1061 |
+
|
| 1062 |
+
return JSONResponse({"error": "Not found"}, status_code=404)
|
| 1063 |
|
| 1064 |
if __name__ == "__main__":
|
| 1065 |
+
# Use PORT provided by the environment (Hugging Face Spaces sets PORT=7860)
|
| 1066 |
+
port = int(os.environ.get("PORT", 7860))
|
| 1067 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
frontend/public/cyto/cyt1.jpg → backend/outputs/detected_1a8f90ea.jpg
RENAMED
|
File without changes
|
frontend/public/cyto/cyt3.png → backend/outputs/detected_1c20231d.jpg
RENAMED
|
File without changes
|
backend/outputs/detected_2198d45d.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_258af4fa.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_268b6165.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_39406fb4.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_39c91983.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_46cf6466.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_48f5ddde.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_4dc34d38.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_4e71956d.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_53ef21ce.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_5af838c6.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_5e93888d.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_6526bf9c.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_669a5877.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_85aa7683.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_8eed01a5.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_907c0662.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_91737a8d.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_abff463d.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_b02db619.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_cb4d377f.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_df1af137.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_e01aa42a.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_e5762460.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_e705fd2d.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_e9a00302.jpg
ADDED
|
Git LFS Details
|
backend/outputs/detected_fd305c21.jpg
ADDED
|
Git LFS Details
|
backend/outputs/images/detected_104914d9.jpg
ADDED
|
Git LFS Details
|
backend/outputs/images/detected_14e068c7.jpg
ADDED
|
Git LFS Details
|
backend/outputs/images/detected_3861cc56.jpg
ADDED
|
Git LFS Details
|
backend/outputs/images/detected_5e5e7d55.jpg
ADDED
|
Git LFS Details
|
backend/outputs/images/detected_7b413ad9.jpg
ADDED
|
Git LFS Details
|
backend/outputs/images/detected_7d0787ca.jpg
ADDED
|
Git LFS Details
|
backend/outputs/images/detected_8e6cc7ce.jpg
ADDED
|
Git LFS Details
|
backend/outputs/images/detected_a13a604c.jpg
ADDED
|
Git LFS Details
|
backend/outputs/images/detected_ca6e3067.jpg
ADDED
|
Git LFS Details
|