Mahmoud Elsamadony
commited on
Commit
·
ce8875c
1
Parent(s):
cf179b4
Update GPU Usage
Browse files- api_client.py +1 -1
- app.py +41 -6
- spaces.yml +7 -0
api_client.py
CHANGED
|
@@ -125,4 +125,4 @@ if __name__ == "__main__":
|
|
| 125 |
# Install gradio_client first:
|
| 126 |
# pip install gradio_client
|
| 127 |
|
| 128 |
-
main()
|
|
|
|
| 125 |
# Install gradio_client first:
|
| 126 |
# pip install gradio_client
|
| 127 |
|
| 128 |
+
main()
|
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import tempfile
|
| 3 |
-
from typing import Dict, List, Optional
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
import torch
|
|
@@ -24,8 +25,22 @@ load_dotenv()
|
|
| 24 |
# Whisper model: use same model names as Django app (tiny, base, small, medium, large-v3)
|
| 25 |
# faster-whisper will download these automatically from Hugging Face on first run
|
| 26 |
WHISPER_MODEL_SIZE = os.environ.get("WHISPER_MODEL_SIZE", "large-v3")
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
# Diarization: NVIDIA NeMo Sortformer model
|
| 31 |
DIARIZATION_MODEL_NAME = os.environ.get(
|
|
@@ -57,7 +72,7 @@ expected_speakers_default = int(os.environ.get("EXPECTED_SPEAKERS", 2))
|
|
| 57 |
# Lazy singletons for the heavy models
|
| 58 |
# ---------------------------------------------------------------------------
|
| 59 |
_whisper_model: Optional[WhisperModel] = None
|
| 60 |
-
_diarization_model: Optional[
|
| 61 |
|
| 62 |
|
| 63 |
def _ensure_snapshot(repo_id: str, local_dir: str, allow_patterns: Optional[List[str]] = None) -> str:
|
|
@@ -92,7 +107,7 @@ def _load_whisper_model() -> WhisperModel:
|
|
| 92 |
return _whisper_model
|
| 93 |
|
| 94 |
|
| 95 |
-
def _load_diarization_model() -> Optional[
|
| 96 |
"""Load NVIDIA NeMo Sortformer diarization model lazily (singleton)"""
|
| 97 |
global _diarization_model
|
| 98 |
if _diarization_model is None:
|
|
@@ -111,6 +126,19 @@ def _load_diarization_model() -> Optional[SortformerEncLabelModel]:
|
|
| 111 |
|
| 112 |
# Switch to evaluation mode
|
| 113 |
_diarization_model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
# Configure streaming parameters (high latency preset for better accuracy)
|
| 116 |
# See: https://huggingface.co/nvidia/diar_streaming_sortformer_4spk-v2#setting-up-streaming-configuration
|
|
@@ -443,6 +471,10 @@ def build_interface() -> gr.Blocks:
|
|
| 443 |
"""
|
| 444 |
)
|
| 445 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
with gr.Row():
|
| 447 |
audio_input = gr.Audio(type="filepath", label="Upload audio (mp3, wav, m4a, ...)")
|
| 448 |
options = gr.Column()
|
|
@@ -512,10 +544,13 @@ def build_interface() -> gr.Blocks:
|
|
| 512 |
"""
|
| 513 |
)
|
| 514 |
|
|
|
|
|
|
|
|
|
|
| 515 |
return demo
|
| 516 |
|
| 517 |
|
| 518 |
demo = build_interface()
|
| 519 |
|
| 520 |
if __name__ == "__main__":
|
| 521 |
-
demo.launch()
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
import os
|
| 3 |
import tempfile
|
| 4 |
+
from typing import Dict, List, Optional, Any
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import torch
|
|
|
|
| 25 |
# Whisper model: use same model names as Django app (tiny, base, small, medium, large-v3)
|
| 26 |
# faster-whisper will download these automatically from Hugging Face on first run
|
| 27 |
WHISPER_MODEL_SIZE = os.environ.get("WHISPER_MODEL_SIZE", "large-v3")
|
| 28 |
+
|
| 29 |
+
# Prefer GPU on Hugging Face Spaces if available, but allow override via env
|
| 30 |
+
def _default_device() -> str:
|
| 31 |
+
try:
|
| 32 |
+
return "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
+
except Exception:
|
| 34 |
+
return "cpu"
|
| 35 |
+
|
| 36 |
+
WHISPER_DEVICE = os.environ.get("WHISPER_DEVICE") or _default_device()
|
| 37 |
+
|
| 38 |
+
# Choose a sensible default compute type based on device (can be overridden by env)
|
| 39 |
+
# - GPU: float16 is fastest and fits T4 for small/medium; use int8_float16 to save VRAM for large-v3
|
| 40 |
+
# - CPU: int8_float32 works well
|
| 41 |
+
WHISPER_COMPUTE_TYPE = os.environ.get("WHISPER_COMPUTE_TYPE") or (
|
| 42 |
+
"float16" if WHISPER_DEVICE == "cuda" else "int8_float32"
|
| 43 |
+
)
|
| 44 |
|
| 45 |
# Diarization: NVIDIA NeMo Sortformer model
|
| 46 |
DIARIZATION_MODEL_NAME = os.environ.get(
|
|
|
|
| 72 |
# Lazy singletons for the heavy models
|
| 73 |
# ---------------------------------------------------------------------------
|
| 74 |
_whisper_model: Optional[WhisperModel] = None
|
| 75 |
+
_diarization_model: Optional[Any] = None
|
| 76 |
|
| 77 |
|
| 78 |
def _ensure_snapshot(repo_id: str, local_dir: str, allow_patterns: Optional[List[str]] = None) -> str:
|
|
|
|
| 107 |
return _whisper_model
|
| 108 |
|
| 109 |
|
| 110 |
+
def _load_diarization_model() -> Optional[Any]:
|
| 111 |
"""Load NVIDIA NeMo Sortformer diarization model lazily (singleton)"""
|
| 112 |
global _diarization_model
|
| 113 |
if _diarization_model is None:
|
|
|
|
| 126 |
|
| 127 |
# Switch to evaluation mode
|
| 128 |
_diarization_model.eval()
|
| 129 |
+
|
| 130 |
+
# Move to GPU if available on Spaces
|
| 131 |
+
if torch.cuda.is_available():
|
| 132 |
+
try:
|
| 133 |
+
_diarization_model.to("cuda")
|
| 134 |
+
print("[DEBUG] Moved Sortformer model to CUDA device")
|
| 135 |
+
except Exception:
|
| 136 |
+
# Fallback for modules exposing .cuda()
|
| 137 |
+
try:
|
| 138 |
+
_diarization_model.cuda()
|
| 139 |
+
print("[DEBUG] Moved Sortformer model to CUDA via .cuda()")
|
| 140 |
+
except Exception as _e:
|
| 141 |
+
print(f"[WARN] Could not move Sortformer model to GPU: {_e}")
|
| 142 |
|
| 143 |
# Configure streaming parameters (high latency preset for better accuracy)
|
| 144 |
# See: https://huggingface.co/nvidia/diar_streaming_sortformer_4spk-v2#setting-up-streaming-configuration
|
|
|
|
| 471 |
"""
|
| 472 |
)
|
| 473 |
|
| 474 |
+
gr.Markdown(
|
| 475 |
+
f"Running on device: `{WHISPER_DEVICE}` with compute type: `{WHISPER_COMPUTE_TYPE}`"
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
with gr.Row():
|
| 479 |
audio_input = gr.Audio(type="filepath", label="Upload audio (mp3, wav, m4a, ...)")
|
| 480 |
options = gr.Column()
|
|
|
|
| 544 |
"""
|
| 545 |
)
|
| 546 |
|
| 547 |
+
# Use a queue to serialize work on GPU and avoid OOM on Spaces free/shared GPUs
|
| 548 |
+
demo.queue(concurrency_count=1, max_size=16)
|
| 549 |
+
|
| 550 |
return demo
|
| 551 |
|
| 552 |
|
| 553 |
demo = build_interface()
|
| 554 |
|
| 555 |
if __name__ == "__main__":
|
| 556 |
+
demo.launch()
|
spaces.yml
CHANGED
|
@@ -1,3 +1,10 @@
|
|
| 1 |
sdk: gradio
|
| 2 |
sdk_version: 4.42.0
|
| 3 |
python_version: 3.10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
sdk: gradio
|
| 2 |
sdk_version: 4.42.0
|
| 3 |
python_version: 3.10
|
| 4 |
+
|
| 5 |
+
# Request a GPU on Hugging Face Spaces. Common options include:
|
| 6 |
+
# - t4-small (free/shared tier)
|
| 7 |
+
# - a10g-small
|
| 8 |
+
# - a100-large
|
| 9 |
+
# Adjust as needed in the Space settings UI.
|
| 10 |
+
hardware: t4-small
|