Mahmoud Elsamadony
commited on
Commit
·
2271844
1
Parent(s):
b5282ea
up
Browse files- NVIDIA_NEMO_MIGRATION.md +163 -0
- __pycache__/app.cpython-311.pyc +0 -0
- app.py +77 -62
- requirements.txt +6 -1
NVIDIA_NEMO_MIGRATION.md
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Migration to NVIDIA NeMo Sortformer Diarization
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
The application has been updated to use **NVIDIA NeMo's Sortformer** (`nvidia/diar_streaming_sortformer_4spk-v2`) instead of the previous pyannote diarization model.
|
| 5 |
+
|
| 6 |
+
## Key Changes
|
| 7 |
+
|
| 8 |
+
### 1. Model Architecture
|
| 9 |
+
- **Old**: pyannote.audio pipeline (gated model requiring HF token and acceptance)
|
| 10 |
+
- **New**: NVIDIA NeMo Sortformer (open CC-BY-4.0 license, no gating)
|
| 11 |
+
|
| 12 |
+
### 2. Features
|
| 13 |
+
- **Streaming capability**: Real-time processing with configurable latency
|
| 14 |
+
- **Max 4 speakers**: Optimized for up to 4 speakers (performance degrades beyond)
|
| 15 |
+
- **Better accuracy**: State-of-the-art DER (Diarization Error Rate) on benchmark datasets
|
| 16 |
+
- **No HF token required**: Model downloads directly without authentication
|
| 17 |
+
|
| 18 |
+
### 3. Technical Improvements
|
| 19 |
+
- **Arrival-Order Speaker Cache (AOSC)**: Tracks speakers by arrival time
|
| 20 |
+
- **Frame-level processing**: 80ms frames (0.08 seconds per frame)
|
| 21 |
+
- **Configurable streaming**: Can adjust latency/accuracy trade-off
|
| 22 |
+
|
| 23 |
+
## Installation
|
| 24 |
+
|
| 25 |
+
### Updated Dependencies
|
| 26 |
+
```bash
|
| 27 |
+
pip install -r requirements.txt
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
Key additions:
|
| 31 |
+
- `nemo_toolkit[asr]` - NVIDIA NeMo framework with ASR components
|
| 32 |
+
- `Cython` and `packaging` - Required for NeMo installation
|
| 33 |
+
|
| 34 |
+
### System Requirements
|
| 35 |
+
```bash
|
| 36 |
+
# Install system dependencies (Ubuntu/Debian)
|
| 37 |
+
apt-get update && apt-get install -y libsndfile1 ffmpeg
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
## Configuration
|
| 41 |
+
|
| 42 |
+
### Environment Variables
|
| 43 |
+
|
| 44 |
+
#### Diarization Model
|
| 45 |
+
```bash
|
| 46 |
+
DIARIZATION_MODEL_NAME=nvidia/diar_streaming_sortformer_4spk-v2
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
#### Streaming Configuration (80ms frames)
|
| 50 |
+
Current preset: **High Latency** (10 seconds, better accuracy)
|
| 51 |
+
|
| 52 |
+
```bash
|
| 53 |
+
DIAR_CHUNK_SIZE=124 # Processing chunk size (frames)
|
| 54 |
+
DIAR_RIGHT_CONTEXT=1 # Future frames after chunk
|
| 55 |
+
DIAR_FIFO_SIZE=124 # Previous frames before chunk
|
| 56 |
+
DIAR_UPDATE_PERIOD=124 # Speaker cache update period
|
| 57 |
+
DIAR_CACHE_SIZE=188 # Total speaker cache size
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
#### Available Presets
|
| 61 |
+
|
| 62 |
+
| Preset | Latency | RTF | CHUNK_SIZE | RIGHT_CONTEXT | FIFO_SIZE | UPDATE_PERIOD | CACHE_SIZE |
|
| 63 |
+
|--------|---------|-----|------------|---------------|-----------|---------------|------------|
|
| 64 |
+
| Very High Latency | 30.4s | 0.002 | 340 | 40 | 40 | 300 | 188 |
|
| 65 |
+
| **High Latency** (current) | **10.0s** | **0.005** | **124** | **1** | **124** | **124** | **188** |
|
| 66 |
+
| Low Latency | 1.04s | 0.093 | 6 | 7 | 188 | 144 | 188 |
|
| 67 |
+
| Ultra Low Latency | 0.32s | 0.180 | 3 | 1 | 188 | 144 | 188 |
|
| 68 |
+
|
| 69 |
+
*RTF = Real-Time Factor (measured on NVIDIA RTX 6000 Ada)*
|
| 70 |
+
|
| 71 |
+
## API Changes
|
| 72 |
+
|
| 73 |
+
### Input Format
|
| 74 |
+
Same as before - audio file path:
|
| 75 |
+
```python
|
| 76 |
+
diar_model.diarize(audio=audio_path, batch_size=1)
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
### Output Format
|
| 80 |
+
NeMo returns: `[[start_seconds, end_seconds, speaker_index], ...]`
|
| 81 |
+
|
| 82 |
+
Example:
|
| 83 |
+
```python
|
| 84 |
+
[
|
| 85 |
+
[0.0, 5.2, 0], # SPEAKER_0 from 0s to 5.2s
|
| 86 |
+
[5.3, 10.1, 1], # SPEAKER_1 from 5.3s to 10.1s
|
| 87 |
+
[10.2, 15.0, 0], # SPEAKER_0 from 10.2s to 15.0s
|
| 88 |
+
]
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
Converted to:
|
| 92 |
+
```json
|
| 93 |
+
{
|
| 94 |
+
"start": 0.0,
|
| 95 |
+
"end": 5.2,
|
| 96 |
+
"speaker": "SPEAKER_0"
|
| 97 |
+
}
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
## Model Limitations
|
| 101 |
+
|
| 102 |
+
1. **Maximum 4 speakers**: Performance degrades with 5+ speakers
|
| 103 |
+
2. **English-optimized**: Trained primarily on English datasets (but works with other languages)
|
| 104 |
+
3. **Long recordings**: May degrade on very long recordings (several hours)
|
| 105 |
+
4. **Audio format**: Requires single-channel (mono) 16kHz audio
|
| 106 |
+
|
| 107 |
+
## Performance Benchmarks
|
| 108 |
+
|
| 109 |
+
### DIHARD III Eval (1-4 speakers)
|
| 110 |
+
- DER: 13.24%
|
| 111 |
+
|
| 112 |
+
### CALLHOME (2 speakers)
|
| 113 |
+
- DER: 6.57%
|
| 114 |
+
|
| 115 |
+
### CALLHOME (full, 2-6 speakers)
|
| 116 |
+
- DER: 10.70%
|
| 117 |
+
|
| 118 |
+
## Troubleshooting
|
| 119 |
+
|
| 120 |
+
### NeMo Installation Issues
|
| 121 |
+
```bash
|
| 122 |
+
# Install prerequisites first
|
| 123 |
+
pip install Cython packaging
|
| 124 |
+
|
| 125 |
+
# Then install NeMo
|
| 126 |
+
pip install git+https://github.com/NVIDIA/NeMo.git@main#egg=nemo_toolkit[asr]
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
### Model Download Issues
|
| 130 |
+
The model (~700MB) downloads automatically from Hugging Face on first use. If download fails:
|
| 131 |
+
- Check internet connection
|
| 132 |
+
- Verify disk space (~1GB free recommended)
|
| 133 |
+
- Try manual download from: https://huggingface.co/nvidia/diar_streaming_sortformer_4spk-v2
|
| 134 |
+
|
| 135 |
+
### Memory Issues
|
| 136 |
+
If running out of memory:
|
| 137 |
+
- Reduce `DIAR_CACHE_SIZE` (default: 188)
|
| 138 |
+
- Use "Low Latency" preset (smaller buffers)
|
| 139 |
+
- Process shorter audio segments
|
| 140 |
+
|
| 141 |
+
## Migration Steps for Hugging Face Space
|
| 142 |
+
|
| 143 |
+
1. **Update requirements.txt**: Already done ✓
|
| 144 |
+
2. **Update app.py**: Already done ✓
|
| 145 |
+
3. **Remove HF_TOKEN requirement**: No longer needed for diarization
|
| 146 |
+
4. **Restart/Rebuild Space**: Click "Restart" or "Rebuild" in Space settings
|
| 147 |
+
5. **First run**: Model will download automatically (~700MB, one-time)
|
| 148 |
+
|
| 149 |
+
## References
|
| 150 |
+
|
| 151 |
+
- [NVIDIA NeMo Repository](https://github.com/NVIDIA/NeMo)
|
| 152 |
+
- [Sortformer Paper](https://arxiv.org/abs/2409.06656)
|
| 153 |
+
- [Streaming Sortformer Paper](https://arxiv.org/abs/2507.18446)
|
| 154 |
+
- [Model Card on Hugging Face](https://huggingface.co/nvidia/diar_streaming_sortformer_4spk-v2)
|
| 155 |
+
- [NeMo Documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/)
|
| 156 |
+
|
| 157 |
+
## License
|
| 158 |
+
|
| 159 |
+
NVIDIA Sortformer is licensed under **CC-BY-4.0** (Creative Commons Attribution 4.0 International).
|
| 160 |
+
- ✓ Commercial use allowed
|
| 161 |
+
- ✓ Modification allowed
|
| 162 |
+
- ✓ Distribution allowed
|
| 163 |
+
- ✓ Attribution required
|
__pycache__/app.cpython-311.pyc
CHANGED
|
Binary files a/__pycache__/app.cpython-311.pyc and b/__pycache__/app.cpython-311.pyc differ
|
|
|
app.py
CHANGED
|
@@ -7,7 +7,14 @@ import torch
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
from faster_whisper import WhisperModel
|
| 9 |
from huggingface_hub import snapshot_download
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
load_dotenv()
|
| 13 |
|
|
@@ -20,14 +27,19 @@ WHISPER_MODEL_SIZE = os.environ.get("WHISPER_MODEL_SIZE", "large-v3")
|
|
| 20 |
WHISPER_DEVICE = os.environ.get("WHISPER_DEVICE", "cpu")
|
| 21 |
WHISPER_COMPUTE_TYPE = os.environ.get("WHISPER_COMPUTE_TYPE", "int8_float32")
|
| 22 |
|
| 23 |
-
# Diarization:
|
| 24 |
-
|
| 25 |
-
"
|
| 26 |
-
)
|
| 27 |
-
DIARIZATION_LOCAL_DIR = os.environ.get(
|
| 28 |
-
"DIARIZATION_LOCAL_DIR", "models/Revai-reverb-diarization-v2"
|
| 29 |
)
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
HF_TOKEN = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 32 |
|
| 33 |
# Preload prompts/parameters
|
|
@@ -44,7 +56,7 @@ best_of_default = int(os.environ.get("WHISPER_BEST_OF", 5))
|
|
| 44 |
# Lazy singletons for the heavy models
|
| 45 |
# ---------------------------------------------------------------------------
|
| 46 |
_whisper_model: Optional[WhisperModel] = None
|
| 47 |
-
|
| 48 |
|
| 49 |
|
| 50 |
def _ensure_snapshot(repo_id: str, local_dir: str, allow_patterns: Optional[List[str]] = None) -> str:
|
|
@@ -79,61 +91,53 @@ def _load_whisper_model() -> WhisperModel:
|
|
| 79 |
return _whisper_model
|
| 80 |
|
| 81 |
|
| 82 |
-
def
|
| 83 |
-
"""Load
|
| 84 |
-
global
|
| 85 |
-
if
|
| 86 |
-
if
|
| 87 |
raise gr.Error(
|
| 88 |
-
"
|
| 89 |
)
|
| 90 |
|
| 91 |
-
print("Loading diarization
|
| 92 |
-
|
| 93 |
try:
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
raise gr.Error(
|
| 98 |
-
f"Could not download '{DIARIZATION_REPO_ID}' to '{DIARIZATION_LOCAL_DIR}': {e}\n\n"
|
| 99 |
-
"Make sure your HF token has the required 'read' scope and that you have accepted "
|
| 100 |
-
"the model's terms at https://hf.co/models/pyannote/speaker-diarization-3.1. "
|
| 101 |
-
"Add the token as the 'HF_TOKEN' Space secret and restart the Space."
|
| 102 |
)
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
except Exception as e:
|
| 117 |
-
# Loading failed - likely due to gated model or invalid token
|
| 118 |
raise gr.Error(
|
| 119 |
-
"Failed to load
|
| 120 |
-
"your Hugging Face token doesn't have permission.\n\n"
|
| 121 |
f"Error details: {e}\n\n"
|
| 122 |
"Solutions:\n"
|
| 123 |
-
" -
|
| 124 |
-
" -
|
| 125 |
-
" -
|
| 126 |
)
|
| 127 |
|
| 128 |
-
if
|
| 129 |
raise gr.Error(
|
| 130 |
-
"Diarization
|
| 131 |
-
"and that your token has access to the repository."
|
| 132 |
)
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
_diarization_pipeline.to(torch.device("cpu"))
|
| 136 |
-
return _diarization_pipeline
|
| 137 |
|
| 138 |
|
| 139 |
# ---------------------------------------------------------------------------
|
|
@@ -220,19 +224,29 @@ def transcribe(
|
|
| 220 |
}
|
| 221 |
|
| 222 |
if enable_diarization:
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
speaker_turns: List[Dict[str, float]] = []
|
| 227 |
-
for
|
|
|
|
| 228 |
speaker_turns.append(
|
| 229 |
{
|
| 230 |
-
"start":
|
| 231 |
-
"end":
|
| 232 |
-
"speaker":
|
| 233 |
}
|
| 234 |
)
|
| 235 |
|
|
|
|
| 236 |
for segment in response["segments"]:
|
| 237 |
mid = (segment["start"] + segment["end"]) / 2
|
| 238 |
segment["speaker"] = None
|
|
@@ -251,11 +265,11 @@ def transcribe(
|
|
| 251 |
# Gradio UI definition
|
| 252 |
# ---------------------------------------------------------------------------
|
| 253 |
def build_interface() -> gr.Blocks:
|
| 254 |
-
with gr.Blocks(title="VTT with Diarization (faster-whisper +
|
| 255 |
gr.Markdown(
|
| 256 |
"""
|
| 257 |
# Voice-to-Text with Optional Diarization
|
| 258 |
-
Powered by **faster-whisper** and **
|
| 259 |
"""
|
| 260 |
)
|
| 261 |
|
|
@@ -273,7 +287,7 @@ def build_interface() -> gr.Blocks:
|
|
| 273 |
diarization_toggle = gr.Checkbox(
|
| 274 |
label="Enable Speaker Diarization",
|
| 275 |
value=False,
|
| 276 |
-
info="
|
| 277 |
)
|
| 278 |
beam_slider = gr.Slider(
|
| 279 |
label="Beam Size",
|
|
@@ -310,11 +324,12 @@ def build_interface() -> gr.Blocks:
|
|
| 310 |
gr.Markdown(
|
| 311 |
f"""
|
| 312 |
## Tips
|
| 313 |
-
- **
|
|
|
|
| 314 |
- Diarization downloads ~700MB on first use (cached afterward)
|
| 315 |
-
- Store your Hugging Face token in Space Secrets as **HF_TOKEN** (required for diarization)
|
| 316 |
- Change `WHISPER_MODEL_SIZE` in Space Variables to `medium` or `large-v3` for higher accuracy
|
| 317 |
- Optimized for Arabic customer service calls with specialized initial prompt
|
|
|
|
| 318 |
"""
|
| 319 |
)
|
| 320 |
|
|
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
from faster_whisper import WhisperModel
|
| 9 |
from huggingface_hub import snapshot_download
|
| 10 |
+
|
| 11 |
+
# Import NeMo for NVIDIA Sortformer diarization
|
| 12 |
+
try:
|
| 13 |
+
from nemo.collections.asr.models import SortformerEncLabelModel
|
| 14 |
+
NEMO_AVAILABLE = True
|
| 15 |
+
except ImportError:
|
| 16 |
+
NEMO_AVAILABLE = False
|
| 17 |
+
SortformerEncLabelModel = None
|
| 18 |
|
| 19 |
load_dotenv()
|
| 20 |
|
|
|
|
| 27 |
WHISPER_DEVICE = os.environ.get("WHISPER_DEVICE", "cpu")
|
| 28 |
WHISPER_COMPUTE_TYPE = os.environ.get("WHISPER_COMPUTE_TYPE", "int8_float32")
|
| 29 |
|
| 30 |
+
# Diarization: NVIDIA NeMo Sortformer model
|
| 31 |
+
DIARIZATION_MODEL_NAME = os.environ.get(
|
| 32 |
+
"DIARIZATION_MODEL_NAME", "nvidia/diar_streaming_sortformer_4spk-v2"
|
|
|
|
|
|
|
|
|
|
| 33 |
)
|
| 34 |
|
| 35 |
+
# Diarization streaming configuration (using "high latency" preset for better accuracy)
|
| 36 |
+
# See https://huggingface.co/nvidia/diar_streaming_sortformer_4spk-v2 for other configs
|
| 37 |
+
CHUNK_SIZE = int(os.environ.get("DIAR_CHUNK_SIZE", 124)) # high latency: 124 frames
|
| 38 |
+
RIGHT_CONTEXT = int(os.environ.get("DIAR_RIGHT_CONTEXT", 1))
|
| 39 |
+
FIFO_SIZE = int(os.environ.get("DIAR_FIFO_SIZE", 124))
|
| 40 |
+
UPDATE_PERIOD = int(os.environ.get("DIAR_UPDATE_PERIOD", 124))
|
| 41 |
+
SPEAKER_CACHE_SIZE = int(os.environ.get("DIAR_CACHE_SIZE", 188))
|
| 42 |
+
|
| 43 |
HF_TOKEN = os.environ.get("HF_TOKEN") or os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
| 44 |
|
| 45 |
# Preload prompts/parameters
|
|
|
|
| 56 |
# Lazy singletons for the heavy models
|
| 57 |
# ---------------------------------------------------------------------------
|
| 58 |
_whisper_model: Optional[WhisperModel] = None
|
| 59 |
+
_diarization_model: Optional[SortformerEncLabelModel] = None
|
| 60 |
|
| 61 |
|
| 62 |
def _ensure_snapshot(repo_id: str, local_dir: str, allow_patterns: Optional[List[str]] = None) -> str:
|
|
|
|
| 91 |
return _whisper_model
|
| 92 |
|
| 93 |
|
| 94 |
+
def _load_diarization_model() -> Optional[SortformerEncLabelModel]:
|
| 95 |
+
"""Load NVIDIA NeMo Sortformer diarization model lazily (singleton)"""
|
| 96 |
+
global _diarization_model
|
| 97 |
+
if _diarization_model is None:
|
| 98 |
+
if not NEMO_AVAILABLE:
|
| 99 |
raise gr.Error(
|
| 100 |
+
"NeMo is not installed. Please install it with: pip install nemo_toolkit[asr]"
|
| 101 |
)
|
| 102 |
|
| 103 |
+
print(f"Loading NVIDIA Sortformer diarization model: {DIARIZATION_MODEL_NAME}...")
|
| 104 |
+
|
| 105 |
try:
|
| 106 |
+
# Load model directly from Hugging Face
|
| 107 |
+
_diarization_model = SortformerEncLabelModel.from_pretrained(
|
| 108 |
+
DIARIZATION_MODEL_NAME
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
)
|
| 110 |
+
|
| 111 |
+
# Switch to evaluation mode
|
| 112 |
+
_diarization_model.eval()
|
| 113 |
+
|
| 114 |
+
# Configure streaming parameters (high latency preset for better accuracy)
|
| 115 |
+
# See: https://huggingface.co/nvidia/diar_streaming_sortformer_4spk-v2#setting-up-streaming-configuration
|
| 116 |
+
_diarization_model.sortformer_modules.chunk_len = CHUNK_SIZE
|
| 117 |
+
_diarization_model.sortformer_modules.chunk_right_context = RIGHT_CONTEXT
|
| 118 |
+
_diarization_model.sortformer_modules.fifo_len = FIFO_SIZE
|
| 119 |
+
_diarization_model.sortformer_modules.spkcache_update_period = UPDATE_PERIOD
|
| 120 |
+
_diarization_model.sortformer_modules.spkcache_len = SPEAKER_CACHE_SIZE
|
| 121 |
+
_diarization_model.sortformer_modules._check_streaming_parameters()
|
| 122 |
+
|
| 123 |
+
print("Sortformer model loaded successfully!")
|
| 124 |
+
|
| 125 |
except Exception as e:
|
|
|
|
| 126 |
raise gr.Error(
|
| 127 |
+
f"Failed to load NVIDIA Sortformer diarization model.\n\n"
|
|
|
|
| 128 |
f"Error details: {e}\n\n"
|
| 129 |
"Solutions:\n"
|
| 130 |
+
" - Make sure NeMo is properly installed: pip install nemo_toolkit[asr]\n"
|
| 131 |
+
" - Check that you have internet access to download from Hugging Face.\n"
|
| 132 |
+
" - The model will be downloaded automatically on first use (~700MB)."
|
| 133 |
)
|
| 134 |
|
| 135 |
+
if _diarization_model is None:
|
| 136 |
raise gr.Error(
|
| 137 |
+
"Diarization model returned None after loading."
|
|
|
|
| 138 |
)
|
| 139 |
+
|
| 140 |
+
return _diarization_model
|
|
|
|
|
|
|
| 141 |
|
| 142 |
|
| 143 |
# ---------------------------------------------------------------------------
|
|
|
|
| 224 |
}
|
| 225 |
|
| 226 |
if enable_diarization:
|
| 227 |
+
diar_model = _load_diarization_model()
|
| 228 |
+
|
| 229 |
+
# Run diarization using NeMo Sortformer
|
| 230 |
+
# Returns list of tuples: (start_time, end_time, speaker_id)
|
| 231 |
+
try:
|
| 232 |
+
predicted_segments = diar_model.diarize(audio=audio_path, batch_size=1)
|
| 233 |
+
except Exception as e:
|
| 234 |
+
raise gr.Error(f"Diarization failed: {e}")
|
| 235 |
+
|
| 236 |
+
# Convert NeMo output format to our speaker_turns format
|
| 237 |
+
# NeMo returns: [[start_seconds, end_seconds, speaker_index], ...]
|
| 238 |
speaker_turns: List[Dict[str, float]] = []
|
| 239 |
+
for segment in predicted_segments:
|
| 240 |
+
start_time, end_time, speaker_idx = segment
|
| 241 |
speaker_turns.append(
|
| 242 |
{
|
| 243 |
+
"start": float(start_time),
|
| 244 |
+
"end": float(end_time),
|
| 245 |
+
"speaker": f"SPEAKER_{int(speaker_idx)}",
|
| 246 |
}
|
| 247 |
)
|
| 248 |
|
| 249 |
+
# Assign speakers to transcript segments based on temporal overlap
|
| 250 |
for segment in response["segments"]:
|
| 251 |
mid = (segment["start"] + segment["end"]) / 2
|
| 252 |
segment["speaker"] = None
|
|
|
|
| 265 |
# Gradio UI definition
|
| 266 |
# ---------------------------------------------------------------------------
|
| 267 |
def build_interface() -> gr.Blocks:
|
| 268 |
+
with gr.Blocks(title="VTT with Diarization (faster-whisper + NVIDIA NeMo)") as demo:
|
| 269 |
gr.Markdown(
|
| 270 |
"""
|
| 271 |
# Voice-to-Text with Optional Diarization
|
| 272 |
+
Powered by **faster-whisper** and **NVIDIA NeMo Sortformer** (runs locally on this Space).
|
| 273 |
"""
|
| 274 |
)
|
| 275 |
|
|
|
|
| 287 |
diarization_toggle = gr.Checkbox(
|
| 288 |
label="Enable Speaker Diarization",
|
| 289 |
value=False,
|
| 290 |
+
info="Uses NVIDIA Sortformer model (max 4 speakers, downloads ~700MB on first use).",
|
| 291 |
)
|
| 292 |
beam_slider = gr.Slider(
|
| 293 |
label="Beam Size",
|
|
|
|
| 324 |
gr.Markdown(
|
| 325 |
f"""
|
| 326 |
## Tips
|
| 327 |
+
- **Whisper model**: `{WHISPER_MODEL_SIZE}` (first run downloads model automatically)
|
| 328 |
+
- **Diarization model**: NVIDIA `{DIARIZATION_MODEL_NAME}` (streaming, max 4 speakers)
|
| 329 |
- Diarization downloads ~700MB on first use (cached afterward)
|
|
|
|
| 330 |
- Change `WHISPER_MODEL_SIZE` in Space Variables to `medium` or `large-v3` for higher accuracy
|
| 331 |
- Optimized for Arabic customer service calls with specialized initial prompt
|
| 332 |
+
- Streaming configuration: High latency preset (10s latency, better accuracy)
|
| 333 |
"""
|
| 334 |
)
|
| 335 |
|
requirements.txt
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
gradio>=4.42.0
|
| 2 |
faster-whisper>=1.0.0
|
| 3 |
-
pyannote.audio>=3.1.1
|
| 4 |
huggingface-hub>=0.23.0
|
| 5 |
torch==2.3.0
|
| 6 |
torchaudio==2.3.0
|
|
@@ -8,3 +7,9 @@ soundfile>=0.12.1
|
|
| 8 |
numpy>=1.26.0
|
| 9 |
ffmpeg-python>=0.2.0
|
| 10 |
python-dotenv>=1.0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio>=4.42.0
|
| 2 |
faster-whisper>=1.0.0
|
|
|
|
| 3 |
huggingface-hub>=0.23.0
|
| 4 |
torch==2.3.0
|
| 5 |
torchaudio==2.3.0
|
|
|
|
| 7 |
numpy>=1.26.0
|
| 8 |
ffmpeg-python>=0.2.0
|
| 9 |
python-dotenv>=1.0.1
|
| 10 |
+
|
| 11 |
+
# NVIDIA NeMo for Sortformer diarization
|
| 12 |
+
# Install with ASR components for speaker diarization
|
| 13 |
+
Cython
|
| 14 |
+
packaging
|
| 15 |
+
nemo_toolkit[asr]
|