Spaces:
Runtime error
Runtime error
uploaded again
Browse files
app.py
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from huggingface_hub import hf_hub_download
|
| 2 |
+
import logging
|
| 3 |
+
import sys
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
|
| 6 |
+
from llama_index.llms import LlamaCPP
|
| 7 |
+
from llama_index.llms.llama_utils import (
|
| 8 |
+
messages_to_prompt,
|
| 9 |
+
completion_to_prompt,
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
MODELS_PATH = "./models"
|
| 13 |
+
|
| 14 |
+
mistral_model_path = hf_hub_download(
|
| 15 |
+
repo_id= "TheBloke/Mistral-7B-Instruct-v0.2-GGUF",
|
| 16 |
+
filename="mistral-7b-instruct-v0.2.Q4_K_M.gguf",
|
| 17 |
+
resume_download=True,
|
| 18 |
+
cache_dir=MODELS_PATH,)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
"""Step 3 : if you use GPU then make sure ( n_gpu_layers":1) at least 1, you can increase or decrease it based on your GPU performance"""
|
| 23 |
+
|
| 24 |
+
llm = LlamaCPP(
|
| 25 |
+
# You can pass in the URL to a GGML model to download it automatically
|
| 26 |
+
# model_url=model_url,
|
| 27 |
+
# optionally, you can set the path to a pre-downloaded model instead of model_url
|
| 28 |
+
model_path=mistral_model_path,
|
| 29 |
+
temperature=0.1,
|
| 30 |
+
max_new_tokens=256,
|
| 31 |
+
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
|
| 32 |
+
context_window=3900,
|
| 33 |
+
# kwargs to pass to __call__()
|
| 34 |
+
generate_kwargs={},
|
| 35 |
+
# kwargs to pass to __init__()
|
| 36 |
+
# set to at least 1 to use GPU
|
| 37 |
+
model_kwargs={"n_gpu_layers": -1},
|
| 38 |
+
# transform inputs into Llama2 format
|
| 39 |
+
messages_to_prompt=messages_to_prompt,
|
| 40 |
+
completion_to_prompt=completion_to_prompt,
|
| 41 |
+
verbose=True,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def model_initialization(model):
|
| 46 |
+
if(model !=""):
|
| 47 |
+
gr.Info("model downloading and configuration process has been started, please wait...")
|
| 48 |
+
MODELS_PATH = "./models"
|
| 49 |
+
repo_id=""
|
| 50 |
+
filename=""
|
| 51 |
+
if(model=="Llama-2-13B-chat"):
|
| 52 |
+
repo_id="TheBloke/Llama-2-13B-chat-GGUF"
|
| 53 |
+
filename="llama-2-13b-chat.Q4_K_M.gguf"
|
| 54 |
+
elif(model=="Mistral-7B-Instruct-v0.2") :
|
| 55 |
+
repo_id="TheBloke/Mistral-7B-Instruct-v0.2-GGUF"
|
| 56 |
+
filename="mistral-7b-instruct-v0.2.Q4_K_M.gguf"
|
| 57 |
+
elif(model=="zephyr-7B-beta"):
|
| 58 |
+
repo_id="TheBloke/zephyr-7B-beta-GGUF "
|
| 59 |
+
filename="zephyr-7b-beta.Q4_K_M.gguf"
|
| 60 |
+
elif(model=="vicuna-7B-v1.5"):
|
| 61 |
+
repo_id="TheBloke/vicuna-7B-v1.5-GGUF"
|
| 62 |
+
filename="vicuna-7b-v1.5.Q4_K_M.gguf"
|
| 63 |
+
elif(model=="Falcon-7B-Instruct"):
|
| 64 |
+
repo_id="TheBloke/Falcon-7B-Instruct-GGML"
|
| 65 |
+
filename="falcon-7b-instruct.ggccv1.q4_1.bin"
|
| 66 |
+
elif(model=="CodeLlama-7B"):
|
| 67 |
+
repo_id="TheBloke/CodeLlama-7B-GGUF"
|
| 68 |
+
filename="codellama-7b.Q4_K_M.gguf"
|
| 69 |
+
else:
|
| 70 |
+
gr.Warning("please select at least one model")
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
mistral_model_path = hf_hub_download(
|
| 74 |
+
repo_id= repo_id,
|
| 75 |
+
filename= filename,
|
| 76 |
+
resume_download=True,
|
| 77 |
+
cache_dir=MODELS_PATH,)
|
| 78 |
+
|
| 79 |
+
llm = LlamaCPP(
|
| 80 |
+
# You can pass in the URL to a GGML model to download it automatically
|
| 81 |
+
# model_url=model_url,
|
| 82 |
+
# optionally, you can set the path to a pre-downloaded model instead of model_url
|
| 83 |
+
model_path=mistral_model_path,
|
| 84 |
+
temperature=0.1,
|
| 85 |
+
max_new_tokens=256,
|
| 86 |
+
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
|
| 87 |
+
context_window=3900,
|
| 88 |
+
# kwargs to pass to __call__()
|
| 89 |
+
generate_kwargs={},
|
| 90 |
+
# set to at least 1 to use GPU
|
| 91 |
+
model_kwargs={"n_gpu_layers": -1},
|
| 92 |
+
# transform inputs into Llama2 format
|
| 93 |
+
messages_to_prompt=messages_to_prompt,
|
| 94 |
+
completion_to_prompt=completion_to_prompt,
|
| 95 |
+
verbose=True,
|
| 96 |
+
)
|
| 97 |
+
gr.Info("model has been configured and ready to chat")
|
| 98 |
+
return "model has been configured and ready to chat, your current model is "+model
|
| 99 |
+
|
| 100 |
+
def predict(message, history):
|
| 101 |
+
messages = []
|
| 102 |
+
answer = []
|
| 103 |
+
response = llm.stream_complete(message)
|
| 104 |
+
for bot_response in response:
|
| 105 |
+
token = bot_response.delta
|
| 106 |
+
answer.append(token)
|
| 107 |
+
final_answer = " ".join(answer)
|
| 108 |
+
yield final_answer
|
| 109 |
+
|
| 110 |
+
with gr.Blocks() as UI:
|
| 111 |
+
|
| 112 |
+
models=gr.Dropdown(["CodeLlama-7B","Llama-2-13B-chat","Falcon-7B-Instruct" "Mistral-7B-Instruct-v0.2", "zephyr-7B-beta",
|
| 113 |
+
"vicuna-7B-v1.5"],value=["CodeLlama-7B","Llama-2-13B-chat","Falcon-7B-Instruct" "Mistral-7B-Instruct-v0.2", "zephyr-7B-beta",
|
| 114 |
+
"vicuna-7B-v1.5"], label="please select at least one model", info="default model is Mistral-7B-Instruct-v0.2")
|
| 115 |
+
textInfo = gr.Textbox(value="current model is Mistral-7B-Instruct-v0.2",label="Model Status");
|
| 116 |
+
# Chatbot interface
|
| 117 |
+
chatUI= gr.ChatInterface(
|
| 118 |
+
predict,
|
| 119 |
+
title="Open Source LLM ChatBot",
|
| 120 |
+
description="Ask any question",
|
| 121 |
+
theme="soft",
|
| 122 |
+
examples=["Hello", "are you LLM model?", "how can i finetune a pre-trained LLM model?","How can i build a chatbot using local open-souce LLM ?"],
|
| 123 |
+
cache_examples=False,
|
| 124 |
+
submit_btn="Send Message",
|
| 125 |
+
retry_btn=None,
|
| 126 |
+
undo_btn="Delete Previous",
|
| 127 |
+
clear_btn="Clear",
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
models.change(fn=model_initialization,inputs=[models],outputs=[textInfo])
|
| 131 |
+
|
| 132 |
+
if __name__ == "__main__":
|
| 133 |
+
UI.launch(debug=True) # launch app
|