Spaces:
Sleeping
Sleeping
Update webapp.py
Browse files
webapp.py
CHANGED
|
@@ -1,856 +1,854 @@
|
|
| 1 |
-
import pandas as pd
|
| 2 |
-
import seaborn as sns
|
| 3 |
-
import matplotlib
|
| 4 |
-
import matplotlib.pyplot as plt
|
| 5 |
-
matplotlib.use('Agg')
|
| 6 |
-
import numpy as np
|
| 7 |
-
import google.generativeai as genai
|
| 8 |
-
from PIL import Image
|
| 9 |
-
from werkzeug.utils import secure_filename
|
| 10 |
-
import os
|
| 11 |
-
import json
|
| 12 |
-
from fpdf import FPDF
|
| 13 |
-
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
|
| 14 |
-
from fastapi.responses import HTMLResponse, FileResponse
|
| 15 |
-
from fastapi.staticfiles import StaticFiles
|
| 16 |
-
from fastapi.templating import Jinja2Templates
|
| 17 |
-
from starlette.requests import Request
|
| 18 |
-
from typing import List
|
| 19 |
-
import textwrap
|
| 20 |
-
from IPython.display import display, Markdown
|
| 21 |
-
from PIL import Image
|
| 22 |
-
import shutil
|
| 23 |
-
from werkzeug.utils import secure_filename
|
| 24 |
-
import urllib.parse
|
| 25 |
-
import re
|
| 26 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 27 |
-
from langchain_community.document_loaders import PyPDFLoader, UnstructuredCSVLoader, UnstructuredExcelLoader, Docx2txtLoader, UnstructuredPowerPointLoader
|
| 28 |
-
from langchain.chains import StuffDocumentsChain
|
| 29 |
-
from langchain.chains.llm import LLMChain
|
| 30 |
-
from langchain.prompts import PromptTemplate
|
| 31 |
-
from langchain.vectorstores import FAISS
|
| 32 |
-
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 33 |
-
from langchain.text_splitter import CharacterTextSplitter
|
| 34 |
-
|
| 35 |
-
app = FastAPI()
|
| 36 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 37 |
-
templates = Jinja2Templates(directory="templates")
|
| 38 |
-
|
| 39 |
-
sns.set_theme(color_codes=True)
|
| 40 |
-
uploaded_df = None
|
| 41 |
-
document_analyzed = False
|
| 42 |
-
question_responses = []
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def format_text(text):
|
| 46 |
-
# Replace **text** with <b>text</b>
|
| 47 |
-
text = re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', text)
|
| 48 |
-
# Replace any remaining * with <br>
|
| 49 |
-
text = text.replace('*', '<br>')
|
| 50 |
-
return text
|
| 51 |
-
|
| 52 |
-
def clean_data(df):
|
| 53 |
-
# Step 1: Clean currency-related columns
|
| 54 |
-
for col in df.columns:
|
| 55 |
-
if any(x in col.lower() for x in ['value', 'price', 'cost', 'amount']):
|
| 56 |
-
if df[col].dtype == 'object':
|
| 57 |
-
df[col] = df[col].str.replace('$', '').str.replace('£', '').str.replace('€', '').replace('[^\d.-]', '', regex=True).astype(float)
|
| 58 |
-
|
| 59 |
-
# Step 2: Drop columns with more than 25% missing values
|
| 60 |
-
null_percentage = df.isnull().sum() / len(df)
|
| 61 |
-
columns_to_drop = null_percentage[null_percentage > 0.25].index
|
| 62 |
-
df.drop(columns=columns_to_drop, inplace=True)
|
| 63 |
-
|
| 64 |
-
# Step 3: Fill missing values for remaining columns
|
| 65 |
-
for col in df.columns:
|
| 66 |
-
if df[col].isnull().sum() > 0:
|
| 67 |
-
if null_percentage[col] <= 0.25:
|
| 68 |
-
if df[col].dtype in ['float64', 'int64']:
|
| 69 |
-
median_value = df[col].median()
|
| 70 |
-
df[col].fillna(median_value, inplace=True)
|
| 71 |
-
|
| 72 |
-
# Step 4: Convert object-type columns to lowercase
|
| 73 |
-
for col in df.columns:
|
| 74 |
-
if df[col].dtype == 'object':
|
| 75 |
-
df[col] = df[col].str.lower()
|
| 76 |
-
|
| 77 |
-
# Step 5: Drop columns with only one unique value
|
| 78 |
-
unique_value_columns = [col for col in df.columns if df[col].nunique() == 1]
|
| 79 |
-
df.drop(columns=unique_value_columns, inplace=True)
|
| 80 |
-
|
| 81 |
-
return df
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def clean_data2(df):
|
| 87 |
-
for col in df.columns:
|
| 88 |
-
if 'value' in col or 'price' in col or 'cost' in col or 'amount' in col or 'Value' in col or 'Price' in col or 'Cost' in col or 'Amount' in col:
|
| 89 |
-
if df[col].dtype == 'object':
|
| 90 |
-
df[col] = df[col].str.replace('$', '')
|
| 91 |
-
df[col] = df[col].str.replace('£', '')
|
| 92 |
-
df[col] = df[col].str.replace('€', '')
|
| 93 |
-
df[col] = df[col].replace('[^\d.-]', '', regex=True).astype(float)
|
| 94 |
-
|
| 95 |
-
null_percentage = df.isnull().sum() / len(df)
|
| 96 |
-
|
| 97 |
-
for col in df.columns:
|
| 98 |
-
if df[col].isnull().sum() > 0:
|
| 99 |
-
if null_percentage[col] <= 0.25:
|
| 100 |
-
if df[col].dtype in ['float64', 'int64']:
|
| 101 |
-
median_value = df[col].median()
|
| 102 |
-
df[col].fillna(median_value, inplace=True)
|
| 103 |
-
|
| 104 |
-
for col in df.columns:
|
| 105 |
-
if df[col].dtype == 'object':
|
| 106 |
-
df[col] = df[col].str.lower()
|
| 107 |
-
|
| 108 |
-
return df
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
def generate_plot(df, plot_path, plot_type):
|
| 113 |
-
df = clean_data(df)
|
| 114 |
-
excluded_words = ["name", "postal", "date", "phone", "address", "code", "id"]
|
| 115 |
-
|
| 116 |
-
if plot_type == 'countplot':
|
| 117 |
-
cat_vars = [col for col in df.select_dtypes(include='object').columns
|
| 118 |
-
if all(word not in col.lower() for word in excluded_words) and df[col].nunique() > 1]
|
| 119 |
-
|
| 120 |
-
for col in cat_vars:
|
| 121 |
-
if df[col].nunique() > 10:
|
| 122 |
-
top_categories = df[col].value_counts().index[:10]
|
| 123 |
-
df[col] = df[col].apply(lambda x: x if x in top_categories else 'Other')
|
| 124 |
-
|
| 125 |
-
num_cols = len(cat_vars)
|
| 126 |
-
num_rows = (num_cols + 1) // 2
|
| 127 |
-
fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(15, 5*num_rows))
|
| 128 |
-
axs = axs.flatten()
|
| 129 |
-
|
| 130 |
-
for i, var in enumerate(cat_vars):
|
| 131 |
-
category_counts = df[var].value_counts()
|
| 132 |
-
top_values = category_counts.index[:10][::-1]
|
| 133 |
-
filtered_df = df.copy()
|
| 134 |
-
filtered_df[var] = pd.Categorical(filtered_df[var], categories=top_values, ordered=True)
|
| 135 |
-
sns.countplot(x=var, data=filtered_df, order=top_values, ax=axs[i])
|
| 136 |
-
axs[i].set_title(var)
|
| 137 |
-
axs[i].tick_params(axis='x', rotation=30)
|
| 138 |
-
|
| 139 |
-
total = len(filtered_df[var])
|
| 140 |
-
for p in axs[i].patches:
|
| 141 |
-
height = p.get_height()
|
| 142 |
-
axs[i].annotate(f'{height/total:.1%}', (p.get_x() + p.get_width() / 2., height), ha='center', va='bottom')
|
| 143 |
-
|
| 144 |
-
sample_size = filtered_df.shape[0]
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
for i in range(num_cols, len(axs)):
|
| 148 |
-
fig.delaxes(axs[i])
|
| 149 |
-
|
| 150 |
-
elif plot_type == 'histplot':
|
| 151 |
-
num_vars = [col for col in df.select_dtypes(include=['int', 'float']).columns
|
| 152 |
-
if all(word not in col.lower() for word in excluded_words)]
|
| 153 |
-
num_cols = len(num_vars)
|
| 154 |
-
num_rows = (num_cols + 2) // 3
|
| 155 |
-
fig, axs = plt.subplots(nrows=num_rows, ncols=min(3, num_cols), figsize=(15, 5*num_rows))
|
| 156 |
-
axs = axs.flatten()
|
| 157 |
-
|
| 158 |
-
plot_index = 0
|
| 159 |
-
|
| 160 |
-
for i, var in enumerate(num_vars):
|
| 161 |
-
if len(df[var].unique()) == len(df):
|
| 162 |
-
fig.delaxes(axs[plot_index])
|
| 163 |
-
else:
|
| 164 |
-
sns.histplot(df[var], ax=axs[plot_index], kde=True, stat="percent")
|
| 165 |
-
axs[plot_index].set_title(var)
|
| 166 |
-
axs[plot_index].set_xlabel('')
|
| 167 |
-
|
| 168 |
-
sample_size = df.shape[0]
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
plot_index += 1
|
| 172 |
-
|
| 173 |
-
for i in range(plot_index, len(axs)):
|
| 174 |
-
fig.delaxes(axs[i])
|
| 175 |
-
|
| 176 |
-
fig.tight_layout()
|
| 177 |
-
fig.savefig(plot_path)
|
| 178 |
-
plt.close(fig)
|
| 179 |
-
return plot_path
|
| 180 |
-
|
| 181 |
-
@app.get("/", response_class=HTMLResponse)
|
| 182 |
-
async def read_form(request: Request):
|
| 183 |
-
return templates.TemplateResponse("upload.html", {"request": request})
|
| 184 |
-
|
| 185 |
-
@app.post("/process/", response_class=HTMLResponse)
|
| 186 |
-
async def process_file(request: Request, file: UploadFile = File(...)):
|
| 187 |
-
global df, uploaded_file, document_analyzed, file_path, file_extension
|
| 188 |
-
uploaded_file = file
|
| 189 |
-
file_location = f"static/{file.filename}"
|
| 190 |
-
|
| 191 |
-
# Save the uploaded file to the server
|
| 192 |
-
with open(file_location, "wb") as buffer:
|
| 193 |
-
shutil.copyfileobj(file.file, buffer)
|
| 194 |
-
|
| 195 |
-
# Load DataFrame based on file type
|
| 196 |
-
file_extension = os.path.splitext(file.filename)[1]
|
| 197 |
-
if file_extension == '.csv':
|
| 198 |
-
file_path = 'dataset.csv'
|
| 199 |
-
df = pd.read_csv(file_location, delimiter=",")
|
| 200 |
-
df.to_csv(file_path, index=False) # Save as dataset.csv
|
| 201 |
-
elif file_extension == '.xlsx':
|
| 202 |
-
file_path = 'dataset.xlsx'
|
| 203 |
-
df = pd.read_excel(file_location)
|
| 204 |
-
df.to_excel(file_path, index=False) # Save as dataset.xlsx
|
| 205 |
-
else:
|
| 206 |
-
raise HTTPException(status_code=415, detail="Unsupported file format")
|
| 207 |
-
|
| 208 |
-
# Get columns of the DataFrame
|
| 209 |
-
columns = df.columns.tolist()
|
| 210 |
-
|
| 211 |
-
return templates.TemplateResponse("upload.html", {"request": request, "columns": columns})
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
@app.post("/result")
|
| 215 |
-
async def result(request: Request,
|
| 216 |
-
target: str = Form(...),
|
| 217 |
-
algorithm: str = Form(...)):
|
| 218 |
-
global df, api
|
| 219 |
-
global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path
|
| 220 |
-
global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
api = "AIzaSyCFI6cTqFdS-mpZBfi7kxwygewtnuF7PfA"
|
| 224 |
-
excluded_words = ["name", "postal", "date", "phone", "address", "id"]
|
| 225 |
-
|
| 226 |
-
if df[target].dtype in ['float64', 'int64']:
|
| 227 |
-
unique_values = df[target].nunique()
|
| 228 |
-
|
| 229 |
-
# If unique values > 20, treat it as regression, else classification
|
| 230 |
-
if unique_values > 20:
|
| 231 |
-
method = "Regression"
|
| 232 |
-
else:
|
| 233 |
-
method = "Classification"
|
| 234 |
-
else:
|
| 235 |
-
# If the target is not numeric, treat it as classification
|
| 236 |
-
method = "Classification"
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
# Initialize response3 and plot3_path to None
|
| 241 |
-
response3 = None
|
| 242 |
-
plot3_path = None
|
| 243 |
-
response4 = None
|
| 244 |
-
plot4_path = None
|
| 245 |
-
response6 = None
|
| 246 |
-
plot6_path = None
|
| 247 |
-
response8 = None # Initialize response8
|
| 248 |
-
plot8_path = None # Initialize plot8_path
|
| 249 |
-
response9 = None # Initialize response9
|
| 250 |
-
plot9_path = None # Initialize plot9_path
|
| 251 |
-
response10 = None # Initialize response8
|
| 252 |
-
plot10_path = None # Initialize plot8_path
|
| 253 |
-
response11 = None # Initialize response9
|
| 254 |
-
plot11_path = None # Initialize plot9_path
|
| 255 |
-
|
| 256 |
-
if method == "Classification":
|
| 257 |
-
cat_vars = [col for col in df.select_dtypes(include=['object']).columns
|
| 258 |
-
if all(word not in col.lower() for word in excluded_words)]
|
| 259 |
-
|
| 260 |
-
# Exclude the target variable from the list if it exists in cat_vars
|
| 261 |
-
if target in cat_vars:
|
| 262 |
-
cat_vars.remove(target)
|
| 263 |
-
|
| 264 |
-
# Create a figure with subplots, but only include the required number of subplots
|
| 265 |
-
num_cols = len(cat_vars)
|
| 266 |
-
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
|
| 267 |
-
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
|
| 268 |
-
axs = axs.flatten()
|
| 269 |
-
|
| 270 |
-
# Create a count plot for each categorical variable
|
| 271 |
-
for i, var in enumerate(cat_vars):
|
| 272 |
-
top_categories = df[var].value_counts().nlargest(5).index
|
| 273 |
-
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)] # Exclude rows with NaN values in the variable
|
| 274 |
-
|
| 275 |
-
# Replace less frequent categories with "Other" if there are more than 5 unique values
|
| 276 |
-
if df[var].nunique() > 5:
|
| 277 |
-
other_categories = df[var].value_counts().index[5:]
|
| 278 |
-
filtered_df[var] = filtered_df[var].apply(lambda x: x if x in top_categories else 'Other')
|
| 279 |
-
|
| 280 |
-
sns.countplot(x=var, hue=target, stat="percent", data=filtered_df, ax=axs[i])
|
| 281 |
-
axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation=45)
|
| 282 |
-
|
| 283 |
-
# Change y-axis label to represent percentage
|
| 284 |
-
axs[i].set_ylabel('Percentage')
|
| 285 |
-
|
| 286 |
-
# Annotate the subplot with sample size
|
| 287 |
-
sample_size = df.shape[0]
|
| 288 |
-
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
|
| 289 |
-
|
| 290 |
-
# Remove any remaining blank subplots
|
| 291 |
-
for i in range(num_cols, len(axs)):
|
| 292 |
-
fig.delaxes(axs[i])
|
| 293 |
-
|
| 294 |
-
plt.xticks(rotation=45)
|
| 295 |
-
plt.tight_layout()
|
| 296 |
-
plot3_path = "static/multiclass_barplot.png"
|
| 297 |
-
plt.savefig(plot3_path)
|
| 298 |
-
plt.close(fig)
|
| 299 |
-
|
| 300 |
-
#response 3
|
| 301 |
-
def to_markdown(text):
|
| 302 |
-
text = text.replace('•', ' *')
|
| 303 |
-
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
|
| 304 |
-
|
| 305 |
-
genai.configure(api_key=api)
|
| 306 |
-
|
| 307 |
-
import PIL.Image
|
| 308 |
-
|
| 309 |
-
img = PIL.Image.open("static/multiclass_barplot.png")
|
| 310 |
-
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
| 311 |
-
#response = model.generate_content(img)
|
| 312 |
-
response = model.generate_content(["As a marketing consulant, I want to understand consumer insighst based on the chart and the market context so I can use the key findings to formulate actionable insights", img])
|
| 313 |
-
response.resolve()
|
| 314 |
-
response3 = format_text(response.text)
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
if method == "Classification":
|
| 318 |
-
# Generate Multiclass Pairplot
|
| 319 |
-
pairplot_fig = sns.pairplot(df, hue=target)
|
| 320 |
-
plot6_path = "static/pair1.png" # Use plot6_path
|
| 321 |
-
pairplot_fig.savefig(plot6_path) # Save the pairplot as a PNG file
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
# Google Gemini Integration
|
| 325 |
-
genai.configure(api_key=api)
|
| 326 |
-
img = PIL.Image.open(plot6_path)
|
| 327 |
-
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
| 328 |
-
|
| 329 |
-
# Generate response based on the pairplot
|
| 330 |
-
response = model.generate_content([
|
| 331 |
-
"You are a professional Data Analyst, write the complete conclusion and actionable insight based on the image. Explain it by points.",
|
| 332 |
-
img
|
| 333 |
-
])
|
| 334 |
-
response.resolve()
|
| 335 |
-
|
| 336 |
-
# Assign the response to response6
|
| 337 |
-
response6 = format_text(response.text)
|
| 338 |
-
|
| 339 |
-
# Include response6 and plot6_path in the data dictionary to be passed to the template
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
if method == "Classification":
|
| 343 |
-
# Multiclass Histplot
|
| 344 |
-
# Get the names of all columns with data type 'object' (categorical columns)
|
| 345 |
-
cat_cols = df.columns.tolist()
|
| 346 |
-
|
| 347 |
-
# Get the names of all columns with data type 'int'
|
| 348 |
-
int_vars = df.select_dtypes(include=['int', 'float']).columns.tolist()
|
| 349 |
-
int_vars = [col for col in int_vars if col != target]
|
| 350 |
-
|
| 351 |
-
# Create a figure with subplots
|
| 352 |
-
num_cols = len(int_vars)
|
| 353 |
-
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
|
| 354 |
-
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
|
| 355 |
-
axs = axs.flatten()
|
| 356 |
-
|
| 357 |
-
# Create a histogram for each integer variable with hue='Attrition'
|
| 358 |
-
for i, var in enumerate(int_vars):
|
| 359 |
-
top_categories = df[var].value_counts().nlargest(10).index
|
| 360 |
-
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)]
|
| 361 |
-
sns.histplot(data=df, x=var, hue=target, kde=True, ax=axs[i], stat="percent")
|
| 362 |
-
axs[i].set_title(var)
|
| 363 |
-
|
| 364 |
-
# Annotate the subplot with sample size
|
| 365 |
-
sample_size = df.shape[0]
|
| 366 |
-
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
|
| 367 |
-
|
| 368 |
-
# Remove any extra empty subplots if needed
|
| 369 |
-
if num_cols < len(axs):
|
| 370 |
-
for i in range(num_cols, len(axs)):
|
| 371 |
-
fig.delaxes(axs[i])
|
| 372 |
-
|
| 373 |
-
# Adjust spacing between subplots
|
| 374 |
-
fig.tight_layout()
|
| 375 |
-
plt.xticks(rotation=45)
|
| 376 |
-
plot4_path = "static/multiclass_histplot.png"
|
| 377 |
-
plt.savefig(plot4_path)
|
| 378 |
-
plt.close(fig)
|
| 379 |
-
|
| 380 |
-
#response 4
|
| 381 |
-
def to_markdown(text):
|
| 382 |
-
text = text.replace('•', ' *')
|
| 383 |
-
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
|
| 384 |
-
|
| 385 |
-
genai.configure(api_key=api)
|
| 386 |
-
|
| 387 |
-
import PIL.Image
|
| 388 |
-
|
| 389 |
-
img = PIL.Image.open("static/multiclass_histplot.png")
|
| 390 |
-
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
| 391 |
-
response4 = model.generate_content(img)
|
| 392 |
-
response4 = model.generate_content(["As a marketing consulant, I want to understand consumer insighst based on the chart and the market context so I can use the key findings to formulate actionable insights", img])
|
| 393 |
-
response4.resolve()
|
| 394 |
-
response4 = format_text(response4.text)
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
# Generate Pairplot
|
| 401 |
-
pairplot_fig = sns.pairplot(df)
|
| 402 |
-
plot5_path = "static/pair2.png"
|
| 403 |
-
pairplot_fig.savefig(plot5_path) # Save the pairplot as a PNG file
|
| 404 |
-
|
| 405 |
-
# Google Gemini Integration
|
| 406 |
-
genai.configure(api_key=api)
|
| 407 |
-
img = PIL.Image.open(plot5_path)
|
| 408 |
-
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
| 409 |
-
|
| 410 |
-
# Generate response based on the pairplot
|
| 411 |
-
response = model.generate_content([
|
| 412 |
-
"You are a professional Data Analyst, write the complete conclusion and actionable insight based on the image. Explain it by points.",
|
| 413 |
-
img
|
| 414 |
-
])
|
| 415 |
-
response.resolve()
|
| 416 |
-
|
| 417 |
-
# Assign the response to response5
|
| 418 |
-
response5 = format_text(response.text)
|
| 419 |
-
|
| 420 |
-
def generate_gemini_response(plot_path):
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
genai.configure(api_key=api)
|
| 424 |
-
img = Image.open(plot_path)
|
| 425 |
-
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
| 426 |
-
response = model.generate_content([
|
| 427 |
-
" As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights",
|
| 428 |
-
img
|
| 429 |
-
])
|
| 430 |
-
response.resolve()
|
| 431 |
-
return response.text
|
| 432 |
-
|
| 433 |
-
plot1_path = generate_plot(df, 'static/plot1.png', 'countplot')
|
| 434 |
-
plot2_path = generate_plot(df, 'static/plot2.png', 'histplot')
|
| 435 |
-
|
| 436 |
-
response1 = format_text((generate_gemini_response(plot1_path)))
|
| 437 |
-
response2 = format_text((generate_gemini_response(plot2_path)))
|
| 438 |
-
|
| 439 |
-
from sklearn import preprocessing
|
| 440 |
-
for col in df.select_dtypes(include=['object']).columns:
|
| 441 |
-
|
| 442 |
-
# Initialize a LabelEncoder object
|
| 443 |
-
label_encoder = preprocessing.LabelEncoder()
|
| 444 |
-
|
| 445 |
-
# Fit the encoder to the unique values in the column
|
| 446 |
-
label_encoder.fit(df[col].unique())
|
| 447 |
-
|
| 448 |
-
# Transform the column using the encoder
|
| 449 |
-
df[col] = label_encoder.transform(df[col])
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
# Display Correlation Heatmap
|
| 453 |
-
plot7_path = "static/correlation_matrix.png"
|
| 454 |
-
fig, ax = plt.subplots(figsize=(30, 24))
|
| 455 |
-
correlation_matrix = df.corr()
|
| 456 |
-
sns.heatmap(correlation_matrix, annot=True, fmt='.2f', cmap='coolwarm', ax=ax)
|
| 457 |
-
plt.savefig(plot7_path)
|
| 458 |
-
plt.close(fig)
|
| 459 |
-
|
| 460 |
-
img = PIL.Image.open(plot7_path)
|
| 461 |
-
response7 = format_text((generate_gemini_response(plot7_path)))
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
X = df.drop(target, axis=1)
|
| 468 |
-
y = df[target]
|
| 469 |
-
from sklearn.model_selection import train_test_split
|
| 470 |
-
from sklearn.metrics import accuracy_score
|
| 471 |
-
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2,random_state=0)
|
| 472 |
-
|
| 473 |
-
from scipy import stats
|
| 474 |
-
threshold = 3
|
| 475 |
-
|
| 476 |
-
for col in X_train.columns:
|
| 477 |
-
if X_train[col].nunique() > 20:
|
| 478 |
-
# Calculate Z-scores for the column
|
| 479 |
-
z_scores = np.abs(stats.zscore(X_train[col]))
|
| 480 |
-
# Find and remove outliers based on the threshold
|
| 481 |
-
outlier_indices = np.where(z_scores > threshold)[0]
|
| 482 |
-
X_train = X_train.drop(X_train.index[outlier_indices])
|
| 483 |
-
y_train = y_train.drop(y_train.index[outlier_indices])
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
from sklearn.tree import DecisionTreeRegressor
|
| 489 |
-
from sklearn.tree import DecisionTreeClassifier
|
| 490 |
-
from sklearn.model_selection import GridSearchCV
|
| 491 |
-
from sklearn import metrics
|
| 492 |
-
from sklearn.metrics import mean_absolute_percentage_error
|
| 493 |
-
import math
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
if algorithm == "Decision Tree":
|
| 497 |
-
|
| 498 |
-
if method == "Regression":
|
| 499 |
-
dtree = DecisionTreeRegressor()
|
| 500 |
-
param_grid = {
|
| 501 |
-
'max_depth': [4, 6, 8],
|
| 502 |
-
'min_samples_split': [4, 6, 8],
|
| 503 |
-
'min_samples_leaf': [1, 2, 3, 4],
|
| 504 |
-
'random_state': [0, 42],
|
| 505 |
-
'max_features': ['auto', 'sqrt', 'log2']
|
| 506 |
-
}
|
| 507 |
-
grid_search = GridSearchCV(dtree, param_grid, cv=5, scoring='neg_mean_squared_error')
|
| 508 |
-
grid_search.fit(X_train, y_train)
|
| 509 |
-
best_params = grid_search.best_params_
|
| 510 |
-
dtree = DecisionTreeRegressor(**best_params)
|
| 511 |
-
dtree.fit(X_train, y_train)
|
| 512 |
-
|
| 513 |
-
y_pred = dtree.predict(X_test)
|
| 514 |
-
mae = metrics.mean_absolute_error(y_test, y_pred)
|
| 515 |
-
mse = metrics.mean_squared_error(y_test, y_pred)
|
| 516 |
-
r2 = metrics.r2_score(y_test, y_pred)
|
| 517 |
-
rmse = np.sqrt(mse)
|
| 518 |
-
|
| 519 |
-
# Feature importance visualization
|
| 520 |
-
imp_df = pd.DataFrame({
|
| 521 |
-
"Feature Name": X_train.columns,
|
| 522 |
-
"Importance": dtree.feature_importances_
|
| 523 |
-
})
|
| 524 |
-
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
|
| 525 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
| 526 |
-
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
|
| 527 |
-
ax.set_title('Top 10 Feature Importance (Decision Tree Regressor)', fontsize=18)
|
| 528 |
-
plot8_path = "static/dtree_regressor.png"
|
| 529 |
-
plt.savefig(plot8_path)
|
| 530 |
-
img = PIL.Image.open(plot8_path)
|
| 531 |
-
response8 = format_text((generate_gemini_response(plot8_path)))
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
elif method == "Classification":
|
| 535 |
-
dtree = DecisionTreeClassifier()
|
| 536 |
-
param_grid = {
|
| 537 |
-
'max_depth': [3, 4, 5, 6, 7],
|
| 538 |
-
'min_samples_split': [2, 3, 4],
|
| 539 |
-
'min_samples_leaf': [1, 2, 3],
|
| 540 |
-
'random_state': [0, 42]
|
| 541 |
-
}
|
| 542 |
-
grid_search = GridSearchCV(dtree, param_grid, cv=5)
|
| 543 |
-
grid_search.fit(X_train, y_train)
|
| 544 |
-
best_params = grid_search.best_params_
|
| 545 |
-
dtree = DecisionTreeClassifier(**best_params)
|
| 546 |
-
dtree.fit(X_train, y_train)
|
| 547 |
-
|
| 548 |
-
y_pred = dtree.predict(X_test)
|
| 549 |
-
acc = metrics.accuracy_score(y_test, y_pred)
|
| 550 |
-
f1 = metrics.f1_score(y_test, y_pred, average='micro')
|
| 551 |
-
prec = metrics.precision_score(y_test, y_pred, average='micro')
|
| 552 |
-
recall = metrics.recall_score(y_test, y_pred, average='micro')
|
| 553 |
-
|
| 554 |
-
# Feature importance visualization
|
| 555 |
-
imp_df = pd.DataFrame({
|
| 556 |
-
"Feature Name": X_train.columns,
|
| 557 |
-
"Importance": dtree.feature_importances_
|
| 558 |
-
})
|
| 559 |
-
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
|
| 560 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
| 561 |
-
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
|
| 562 |
-
ax.set_title('Top 10 Feature Importance (Decision Tree Classifier)', fontsize=18)
|
| 563 |
-
plot9_path = "static/dtree_classifier.png"
|
| 564 |
-
plt.savefig(plot9_path)
|
| 565 |
-
img = PIL.Image.open(plot9_path)
|
| 566 |
-
response9 = format_text((generate_gemini_response(plot9_path)))
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
from sklearn.ensemble import RandomForestRegressor
|
| 571 |
-
from sklearn.ensemble import RandomForestClassifier
|
| 572 |
-
|
| 573 |
-
if algorithm == "Random Forest":
|
| 574 |
-
|
| 575 |
-
if method == "Regression":
|
| 576 |
-
rf = RandomForestRegressor()
|
| 577 |
-
param_grid = {
|
| 578 |
-
'max_depth': [4, 6, 8],
|
| 579 |
-
'random_state': [0, 42],
|
| 580 |
-
'max_features': ['auto', 'sqrt', 'log2']
|
| 581 |
-
}
|
| 582 |
-
grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='neg_mean_squared_error')
|
| 583 |
-
grid_search.fit(X_train, y_train)
|
| 584 |
-
best_params = grid_search.best_params_
|
| 585 |
-
rf = RandomForestRegressor(**best_params)
|
| 586 |
-
rf.fit(X_train, y_train)
|
| 587 |
-
|
| 588 |
-
y_pred = rf.predict(X_test)
|
| 589 |
-
mae = metrics.mean_absolute_error(y_test, y_pred)
|
| 590 |
-
mse = metrics.mean_squared_error(y_test, y_pred)
|
| 591 |
-
r2 = metrics.r2_score(y_test, y_pred)
|
| 592 |
-
rmse = np.sqrt(mse)
|
| 593 |
-
|
| 594 |
-
# Feature importance visualization
|
| 595 |
-
imp_df = pd.DataFrame({
|
| 596 |
-
"Feature Name": X_train.columns,
|
| 597 |
-
"Importance": rf.feature_importances_
|
| 598 |
-
})
|
| 599 |
-
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
|
| 600 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
| 601 |
-
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
|
| 602 |
-
ax.set_title('Top 10 Feature Importance (Random Forest Regressor)', fontsize=18)
|
| 603 |
-
plot10_path = "static/rf_regressor.png"
|
| 604 |
-
plt.savefig(plot10_path)
|
| 605 |
-
img = PIL.Image.open(plot10_path)
|
| 606 |
-
response10 = format_text((generate_gemini_response(plot10_path)))
|
| 607 |
-
|
| 608 |
-
elif method == "Classification":
|
| 609 |
-
rf = RandomForestClassifier()
|
| 610 |
-
param_grid = {
|
| 611 |
-
'max_depth': [3, 4, 5, 6],
|
| 612 |
-
'random_state': [0, 42]
|
| 613 |
-
}
|
| 614 |
-
grid_search = GridSearchCV(rf, param_grid, cv=5)
|
| 615 |
-
grid_search.fit(X_train, y_train)
|
| 616 |
-
best_params = grid_search.best_params_
|
| 617 |
-
rf = RandomForestClassifier(**best_params)
|
| 618 |
-
rf.fit(X_train, y_train)
|
| 619 |
-
|
| 620 |
-
y_pred = rf.predict(X_test)
|
| 621 |
-
acc = metrics.accuracy_score(y_test, y_pred)
|
| 622 |
-
f1 = metrics.f1_score(y_test, y_pred, average='micro')
|
| 623 |
-
prec = metrics.precision_score(y_test, y_pred, average='micro')
|
| 624 |
-
recall = metrics.recall_score(y_test, y_pred, average='micro')
|
| 625 |
-
|
| 626 |
-
# Feature importance visualization
|
| 627 |
-
imp_df = pd.DataFrame({
|
| 628 |
-
"Feature Name": X_train.columns,
|
| 629 |
-
"Importance": rf.feature_importances_
|
| 630 |
-
})
|
| 631 |
-
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
|
| 632 |
-
fig, ax = plt.subplots(figsize=(10, 8))
|
| 633 |
-
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
|
| 634 |
-
ax.set_title('Top 10 Feature Importance (Random Forest Classifier)', fontsize=18)
|
| 635 |
-
plot11_path = "static/rf_classifier.png"
|
| 636 |
-
plt.savefig(plot11_path)
|
| 637 |
-
img = PIL.Image.open(plot11_path)
|
| 638 |
-
response11 = format_text((generate_gemini_response(plot11_path)))
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
document_analyzed = True
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
data = {
|
| 647 |
-
"request": request,
|
| 648 |
-
"response1": response1,
|
| 649 |
-
"response2": response2,
|
| 650 |
-
"response5": response5,
|
| 651 |
-
"response7": response7,
|
| 652 |
-
"plot1_path": plot1_path,
|
| 653 |
-
"plot2_path": plot2_path,
|
| 654 |
-
"plot5_path": plot5_path,
|
| 655 |
-
"plot7_path": plot7_path,
|
| 656 |
-
"show_conversation": document_analyzed,
|
| 657 |
-
"question_responses": question_responses
|
| 658 |
-
}
|
| 659 |
-
|
| 660 |
-
# Conditionally include response3 and plot3_path if they exist
|
| 661 |
-
if response3:
|
| 662 |
-
data["response3"] = response3
|
| 663 |
-
if plot3_path:
|
| 664 |
-
data["plot3_path"] = plot3_path
|
| 665 |
-
if response4:
|
| 666 |
-
data["response4"] = response3
|
| 667 |
-
if plot4_path:
|
| 668 |
-
data["plot4_path"] = plot4_path
|
| 669 |
-
if response6:
|
| 670 |
-
data["response6"] = response6
|
| 671 |
-
if plot6_path:
|
| 672 |
-
data["plot6_path"] = plot6_path
|
| 673 |
-
if response8:
|
| 674 |
-
data["response8"] = response8
|
| 675 |
-
if plot8_path:
|
| 676 |
-
data["plot8_path"] = plot8_path
|
| 677 |
-
if response9:
|
| 678 |
-
data["response9"] = response9
|
| 679 |
-
if plot9_path:
|
| 680 |
-
data["plot9_path"] = plot9_path
|
| 681 |
-
if response10:
|
| 682 |
-
data["response10"] = response10
|
| 683 |
-
if plot10_path:
|
| 684 |
-
data["plot10_path"] = plot10_path
|
| 685 |
-
if response11:
|
| 686 |
-
data["response11"] = response11
|
| 687 |
-
if plot11_path:
|
| 688 |
-
data["plot11_path"] = plot11_path
|
| 689 |
-
|
| 690 |
-
return templates.TemplateResponse("upload.html", data)
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
# Route for asking questions
|
| 696 |
-
@app.post("/ask", response_class=HTMLResponse)
|
| 697 |
-
async def ask_question(request: Request, question: str = Form(...)):
|
| 698 |
-
global file_extension, question_responses, api
|
| 699 |
-
global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path
|
| 700 |
-
global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11
|
| 701 |
-
global document_analyzed
|
| 702 |
-
|
| 703 |
-
# Check if a file has been uploaded
|
| 704 |
-
if not file_extension:
|
| 705 |
-
raise HTTPException(status_code=400, detail="No file has been uploaded yet.")
|
| 706 |
-
|
| 707 |
-
# Initialize the LLM model
|
| 708 |
-
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", google_api_key=api)
|
| 709 |
-
|
| 710 |
-
# Determine the file extension and select the appropriate loader
|
| 711 |
-
file_path = ''
|
| 712 |
-
loader = None
|
| 713 |
-
|
| 714 |
-
if file_extension.endswith('.csv'):
|
| 715 |
-
file_path = 'dataset.csv'
|
| 716 |
-
loader = UnstructuredCSVLoader(file_path, mode="elements")
|
| 717 |
-
elif file_extension.endswith('.xlsx'):
|
| 718 |
-
file_path = 'dataset.xlsx'
|
| 719 |
-
loader = UnstructuredExcelLoader(file_path, mode="elements")
|
| 720 |
-
else:
|
| 721 |
-
raise HTTPException(status_code=400, detail="Unsupported file format")
|
| 722 |
-
|
| 723 |
-
# Load and process the document
|
| 724 |
-
try:
|
| 725 |
-
docs = loader.load()
|
| 726 |
-
except Exception as e:
|
| 727 |
-
raise HTTPException(status_code=500, detail=f"Error loading document: {str(e)}")
|
| 728 |
-
|
| 729 |
-
# Combine document text
|
| 730 |
-
text = "\n".join([doc.page_content for doc in docs])
|
| 731 |
-
os.environ["GOOGLE_API_KEY"] = api
|
| 732 |
-
|
| 733 |
-
# Initialize embeddings and create FAISS vector store
|
| 734 |
-
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 735 |
-
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 736 |
-
chunks = text_splitter.split_text(text)
|
| 737 |
-
document_search = FAISS.from_texts(chunks, embeddings)
|
| 738 |
-
|
| 739 |
-
# Generate query embedding and perform similarity search
|
| 740 |
-
query_embedding = embeddings.embed_query(question)
|
| 741 |
-
results = document_search.similarity_search_by_vector(query_embedding, k=3)
|
| 742 |
-
|
| 743 |
-
if results:
|
| 744 |
-
retrieved_texts = " ".join([result.page_content for result in results])
|
| 745 |
-
|
| 746 |
-
# Define the Summarize Chain for the question
|
| 747 |
-
latest_response = "" if not question_responses else question_responses[-1][1]
|
| 748 |
-
template1 = (
|
| 749 |
-
f"{question} Answer the question based on the following:\n\"{text}\"\n:" +
|
| 750 |
-
(f" Answer the Question with only 3 sentences. Latest conversation: {latest_response}" if latest_response else "")
|
| 751 |
-
)
|
| 752 |
-
prompt1 = PromptTemplate.from_template(template1)
|
| 753 |
-
|
| 754 |
-
# Initialize the LLMChain with the prompt
|
| 755 |
-
llm_chain1 = LLMChain(llm=llm, prompt=prompt1)
|
| 756 |
-
|
| 757 |
-
# Invoke the chain to get the summary
|
| 758 |
-
try:
|
| 759 |
-
response_chain = llm_chain1.invoke({"text": text})
|
| 760 |
-
summary1 = response_chain["text"]
|
| 761 |
-
except Exception as e:
|
| 762 |
-
raise HTTPException(status_code=500, detail=f"Error invoking LLMChain: {str(e)}")
|
| 763 |
-
|
| 764 |
-
# Generate embeddings for the summary
|
| 765 |
-
try:
|
| 766 |
-
summary_embedding = embeddings.embed_query(summary1)
|
| 767 |
-
document_search = FAISS.from_texts([summary1], embeddings)
|
| 768 |
-
except Exception as e:
|
| 769 |
-
raise HTTPException(status_code=500, detail=f"Error generating embeddings: {str(e)}")
|
| 770 |
-
|
| 771 |
-
# Perform a search on the FAISS vector database
|
| 772 |
-
try:
|
| 773 |
-
if document_search:
|
| 774 |
-
query_embedding = embeddings.embed_query(question)
|
| 775 |
-
results = document_search.similarity_search_by_vector(query_embedding, k=1)
|
| 776 |
-
|
| 777 |
-
if results:
|
| 778 |
-
current_response = format_text(results[0].page_content)
|
| 779 |
-
else:
|
| 780 |
-
current_response = "No matching document found in the database."
|
| 781 |
-
else:
|
| 782 |
-
current_response = "Vector database not initialized."
|
| 783 |
-
except Exception as e:
|
| 784 |
-
raise HTTPException(status_code=500, detail=f"Error during similarity search: {str(e)}")
|
| 785 |
-
else:
|
| 786 |
-
current_response = "No relevant results found."
|
| 787 |
-
|
| 788 |
-
# Append the question and response from FAISS search
|
| 789 |
-
current_question = f"You asked: {question}"
|
| 790 |
-
question_responses.append((current_question, current_response))
|
| 791 |
-
|
| 792 |
-
# Save all results to output_summary.json
|
| 793 |
-
save_to_json(question_responses)
|
| 794 |
-
|
| 795 |
-
|
| 796 |
-
|
| 797 |
-
data = {
|
| 798 |
-
"request": request,
|
| 799 |
-
"response1": response1,
|
| 800 |
-
"response2": response2,
|
| 801 |
-
"response5": response5,
|
| 802 |
-
"response7": response7,
|
| 803 |
-
"plot1_path": plot1_path,
|
| 804 |
-
"plot2_path": plot2_path,
|
| 805 |
-
"plot5_path": plot5_path,
|
| 806 |
-
"plot7_path": plot7_path,
|
| 807 |
-
"show_conversation": True,
|
| 808 |
-
"question_responses": question_responses
|
| 809 |
-
}
|
| 810 |
-
|
| 811 |
-
# Conditionally include response3 and plot3_path if they exist
|
| 812 |
-
if response3:
|
| 813 |
-
data["response3"] = response3
|
| 814 |
-
if plot3_path:
|
| 815 |
-
data["plot3_path"] = plot3_path
|
| 816 |
-
if response4:
|
| 817 |
-
data["response4"] = response3
|
| 818 |
-
if plot4_path:
|
| 819 |
-
data["plot4_path"] = plot4_path
|
| 820 |
-
if response6:
|
| 821 |
-
data["response6"] = response6
|
| 822 |
-
if plot6_path:
|
| 823 |
-
data["plot6_path"] = plot6_path
|
| 824 |
-
if response8:
|
| 825 |
-
data["response8"] = response8
|
| 826 |
-
if plot8_path:
|
| 827 |
-
data["plot8_path"] = plot8_path
|
| 828 |
-
if response9:
|
| 829 |
-
data["response9"] = response9
|
| 830 |
-
if plot9_path:
|
| 831 |
-
data["plot9_path"] = plot9_path
|
| 832 |
-
if response10:
|
| 833 |
-
data["response10"] = response10
|
| 834 |
-
if plot10_path:
|
| 835 |
-
data["plot10_path"] = plot10_path
|
| 836 |
-
if response11:
|
| 837 |
-
data["response11"] = response11
|
| 838 |
-
if plot11_path:
|
| 839 |
-
data["plot11_path"] = plot11_path
|
| 840 |
-
|
| 841 |
-
return templates.TemplateResponse("upload.html", data)
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
def save_to_json(question_responses):
|
| 846 |
-
outputs = {
|
| 847 |
-
"question_responses": question_responses
|
| 848 |
-
}
|
| 849 |
-
with open("output_summary.json", "w") as outfile:
|
| 850 |
-
json.dump(outputs, outfile)
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
import uvicorn
|
| 856 |
-
uvicorn.run(app, host="127.0.0.1", port=8000)
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import seaborn as sns
|
| 3 |
+
import matplotlib
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
matplotlib.use('Agg')
|
| 6 |
+
import numpy as np
|
| 7 |
+
import google.generativeai as genai
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from werkzeug.utils import secure_filename
|
| 10 |
+
import os
|
| 11 |
+
import json
|
| 12 |
+
from fpdf import FPDF
|
| 13 |
+
from fastapi import FastAPI, File, UploadFile, Form, HTTPException
|
| 14 |
+
from fastapi.responses import HTMLResponse, FileResponse
|
| 15 |
+
from fastapi.staticfiles import StaticFiles
|
| 16 |
+
from fastapi.templating import Jinja2Templates
|
| 17 |
+
from starlette.requests import Request
|
| 18 |
+
from typing import List
|
| 19 |
+
import textwrap
|
| 20 |
+
from IPython.display import display, Markdown
|
| 21 |
+
from PIL import Image
|
| 22 |
+
import shutil
|
| 23 |
+
from werkzeug.utils import secure_filename
|
| 24 |
+
import urllib.parse
|
| 25 |
+
import re
|
| 26 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 27 |
+
from langchain_community.document_loaders import PyPDFLoader, UnstructuredCSVLoader, UnstructuredExcelLoader, Docx2txtLoader, UnstructuredPowerPointLoader
|
| 28 |
+
from langchain.chains import StuffDocumentsChain
|
| 29 |
+
from langchain.chains.llm import LLMChain
|
| 30 |
+
from langchain.prompts import PromptTemplate
|
| 31 |
+
from langchain.vectorstores import FAISS
|
| 32 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 33 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 34 |
+
|
| 35 |
+
app = FastAPI()
|
| 36 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 37 |
+
templates = Jinja2Templates(directory="templates")
|
| 38 |
+
|
| 39 |
+
sns.set_theme(color_codes=True)
|
| 40 |
+
uploaded_df = None
|
| 41 |
+
document_analyzed = False
|
| 42 |
+
question_responses = []
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def format_text(text):
|
| 46 |
+
# Replace **text** with <b>text</b>
|
| 47 |
+
text = re.sub(r'\*\*(.*?)\*\*', r'<b>\1</b>', text)
|
| 48 |
+
# Replace any remaining * with <br>
|
| 49 |
+
text = text.replace('*', '<br>')
|
| 50 |
+
return text
|
| 51 |
+
|
| 52 |
+
def clean_data(df):
|
| 53 |
+
# Step 1: Clean currency-related columns
|
| 54 |
+
for col in df.columns:
|
| 55 |
+
if any(x in col.lower() for x in ['value', 'price', 'cost', 'amount']):
|
| 56 |
+
if df[col].dtype == 'object':
|
| 57 |
+
df[col] = df[col].str.replace('$', '').str.replace('£', '').str.replace('€', '').replace('[^\d.-]', '', regex=True).astype(float)
|
| 58 |
+
|
| 59 |
+
# Step 2: Drop columns with more than 25% missing values
|
| 60 |
+
null_percentage = df.isnull().sum() / len(df)
|
| 61 |
+
columns_to_drop = null_percentage[null_percentage > 0.25].index
|
| 62 |
+
df.drop(columns=columns_to_drop, inplace=True)
|
| 63 |
+
|
| 64 |
+
# Step 3: Fill missing values for remaining columns
|
| 65 |
+
for col in df.columns:
|
| 66 |
+
if df[col].isnull().sum() > 0:
|
| 67 |
+
if null_percentage[col] <= 0.25:
|
| 68 |
+
if df[col].dtype in ['float64', 'int64']:
|
| 69 |
+
median_value = df[col].median()
|
| 70 |
+
df[col].fillna(median_value, inplace=True)
|
| 71 |
+
|
| 72 |
+
# Step 4: Convert object-type columns to lowercase
|
| 73 |
+
for col in df.columns:
|
| 74 |
+
if df[col].dtype == 'object':
|
| 75 |
+
df[col] = df[col].str.lower()
|
| 76 |
+
|
| 77 |
+
# Step 5: Drop columns with only one unique value
|
| 78 |
+
unique_value_columns = [col for col in df.columns if df[col].nunique() == 1]
|
| 79 |
+
df.drop(columns=unique_value_columns, inplace=True)
|
| 80 |
+
|
| 81 |
+
return df
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def clean_data2(df):
|
| 87 |
+
for col in df.columns:
|
| 88 |
+
if 'value' in col or 'price' in col or 'cost' in col or 'amount' in col or 'Value' in col or 'Price' in col or 'Cost' in col or 'Amount' in col:
|
| 89 |
+
if df[col].dtype == 'object':
|
| 90 |
+
df[col] = df[col].str.replace('$', '')
|
| 91 |
+
df[col] = df[col].str.replace('£', '')
|
| 92 |
+
df[col] = df[col].str.replace('€', '')
|
| 93 |
+
df[col] = df[col].replace('[^\d.-]', '', regex=True).astype(float)
|
| 94 |
+
|
| 95 |
+
null_percentage = df.isnull().sum() / len(df)
|
| 96 |
+
|
| 97 |
+
for col in df.columns:
|
| 98 |
+
if df[col].isnull().sum() > 0:
|
| 99 |
+
if null_percentage[col] <= 0.25:
|
| 100 |
+
if df[col].dtype in ['float64', 'int64']:
|
| 101 |
+
median_value = df[col].median()
|
| 102 |
+
df[col].fillna(median_value, inplace=True)
|
| 103 |
+
|
| 104 |
+
for col in df.columns:
|
| 105 |
+
if df[col].dtype == 'object':
|
| 106 |
+
df[col] = df[col].str.lower()
|
| 107 |
+
|
| 108 |
+
return df
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def generate_plot(df, plot_path, plot_type):
|
| 113 |
+
df = clean_data(df)
|
| 114 |
+
excluded_words = ["name", "postal", "date", "phone", "address", "code", "id"]
|
| 115 |
+
|
| 116 |
+
if plot_type == 'countplot':
|
| 117 |
+
cat_vars = [col for col in df.select_dtypes(include='object').columns
|
| 118 |
+
if all(word not in col.lower() for word in excluded_words) and df[col].nunique() > 1]
|
| 119 |
+
|
| 120 |
+
for col in cat_vars:
|
| 121 |
+
if df[col].nunique() > 10:
|
| 122 |
+
top_categories = df[col].value_counts().index[:10]
|
| 123 |
+
df[col] = df[col].apply(lambda x: x if x in top_categories else 'Other')
|
| 124 |
+
|
| 125 |
+
num_cols = len(cat_vars)
|
| 126 |
+
num_rows = (num_cols + 1) // 2
|
| 127 |
+
fig, axs = plt.subplots(nrows=num_rows, ncols=2, figsize=(15, 5*num_rows))
|
| 128 |
+
axs = axs.flatten()
|
| 129 |
+
|
| 130 |
+
for i, var in enumerate(cat_vars):
|
| 131 |
+
category_counts = df[var].value_counts()
|
| 132 |
+
top_values = category_counts.index[:10][::-1]
|
| 133 |
+
filtered_df = df.copy()
|
| 134 |
+
filtered_df[var] = pd.Categorical(filtered_df[var], categories=top_values, ordered=True)
|
| 135 |
+
sns.countplot(x=var, data=filtered_df, order=top_values, ax=axs[i])
|
| 136 |
+
axs[i].set_title(var)
|
| 137 |
+
axs[i].tick_params(axis='x', rotation=30)
|
| 138 |
+
|
| 139 |
+
total = len(filtered_df[var])
|
| 140 |
+
for p in axs[i].patches:
|
| 141 |
+
height = p.get_height()
|
| 142 |
+
axs[i].annotate(f'{height/total:.1%}', (p.get_x() + p.get_width() / 2., height), ha='center', va='bottom')
|
| 143 |
+
|
| 144 |
+
sample_size = filtered_df.shape[0]
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
for i in range(num_cols, len(axs)):
|
| 148 |
+
fig.delaxes(axs[i])
|
| 149 |
+
|
| 150 |
+
elif plot_type == 'histplot':
|
| 151 |
+
num_vars = [col for col in df.select_dtypes(include=['int', 'float']).columns
|
| 152 |
+
if all(word not in col.lower() for word in excluded_words)]
|
| 153 |
+
num_cols = len(num_vars)
|
| 154 |
+
num_rows = (num_cols + 2) // 3
|
| 155 |
+
fig, axs = plt.subplots(nrows=num_rows, ncols=min(3, num_cols), figsize=(15, 5*num_rows))
|
| 156 |
+
axs = axs.flatten()
|
| 157 |
+
|
| 158 |
+
plot_index = 0
|
| 159 |
+
|
| 160 |
+
for i, var in enumerate(num_vars):
|
| 161 |
+
if len(df[var].unique()) == len(df):
|
| 162 |
+
fig.delaxes(axs[plot_index])
|
| 163 |
+
else:
|
| 164 |
+
sns.histplot(df[var], ax=axs[plot_index], kde=True, stat="percent")
|
| 165 |
+
axs[plot_index].set_title(var)
|
| 166 |
+
axs[plot_index].set_xlabel('')
|
| 167 |
+
|
| 168 |
+
sample_size = df.shape[0]
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
plot_index += 1
|
| 172 |
+
|
| 173 |
+
for i in range(plot_index, len(axs)):
|
| 174 |
+
fig.delaxes(axs[i])
|
| 175 |
+
|
| 176 |
+
fig.tight_layout()
|
| 177 |
+
fig.savefig(plot_path)
|
| 178 |
+
plt.close(fig)
|
| 179 |
+
return plot_path
|
| 180 |
+
|
| 181 |
+
@app.get("/", response_class=HTMLResponse)
|
| 182 |
+
async def read_form(request: Request):
|
| 183 |
+
return templates.TemplateResponse("upload.html", {"request": request})
|
| 184 |
+
|
| 185 |
+
@app.post("/process/", response_class=HTMLResponse)
|
| 186 |
+
async def process_file(request: Request, file: UploadFile = File(...)):
|
| 187 |
+
global df, uploaded_file, document_analyzed, file_path, file_extension
|
| 188 |
+
uploaded_file = file
|
| 189 |
+
file_location = f"static/{file.filename}"
|
| 190 |
+
|
| 191 |
+
# Save the uploaded file to the server
|
| 192 |
+
with open(file_location, "wb") as buffer:
|
| 193 |
+
shutil.copyfileobj(file.file, buffer)
|
| 194 |
+
|
| 195 |
+
# Load DataFrame based on file type
|
| 196 |
+
file_extension = os.path.splitext(file.filename)[1]
|
| 197 |
+
if file_extension == '.csv':
|
| 198 |
+
file_path = 'dataset.csv'
|
| 199 |
+
df = pd.read_csv(file_location, delimiter=",")
|
| 200 |
+
df.to_csv(file_path, index=False) # Save as dataset.csv
|
| 201 |
+
elif file_extension == '.xlsx':
|
| 202 |
+
file_path = 'dataset.xlsx'
|
| 203 |
+
df = pd.read_excel(file_location)
|
| 204 |
+
df.to_excel(file_path, index=False) # Save as dataset.xlsx
|
| 205 |
+
else:
|
| 206 |
+
raise HTTPException(status_code=415, detail="Unsupported file format")
|
| 207 |
+
|
| 208 |
+
# Get columns of the DataFrame
|
| 209 |
+
columns = df.columns.tolist()
|
| 210 |
+
|
| 211 |
+
return templates.TemplateResponse("upload.html", {"request": request, "columns": columns})
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
@app.post("/result")
|
| 215 |
+
async def result(request: Request,
|
| 216 |
+
target: str = Form(...),
|
| 217 |
+
algorithm: str = Form(...)):
|
| 218 |
+
global df, api
|
| 219 |
+
global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path
|
| 220 |
+
global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
api = "AIzaSyCFI6cTqFdS-mpZBfi7kxwygewtnuF7PfA"
|
| 224 |
+
excluded_words = ["name", "postal", "date", "phone", "address", "id"]
|
| 225 |
+
|
| 226 |
+
if df[target].dtype in ['float64', 'int64']:
|
| 227 |
+
unique_values = df[target].nunique()
|
| 228 |
+
|
| 229 |
+
# If unique values > 20, treat it as regression, else classification
|
| 230 |
+
if unique_values > 20:
|
| 231 |
+
method = "Regression"
|
| 232 |
+
else:
|
| 233 |
+
method = "Classification"
|
| 234 |
+
else:
|
| 235 |
+
# If the target is not numeric, treat it as classification
|
| 236 |
+
method = "Classification"
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
# Initialize response3 and plot3_path to None
|
| 241 |
+
response3 = None
|
| 242 |
+
plot3_path = None
|
| 243 |
+
response4 = None
|
| 244 |
+
plot4_path = None
|
| 245 |
+
response6 = None
|
| 246 |
+
plot6_path = None
|
| 247 |
+
response8 = None # Initialize response8
|
| 248 |
+
plot8_path = None # Initialize plot8_path
|
| 249 |
+
response9 = None # Initialize response9
|
| 250 |
+
plot9_path = None # Initialize plot9_path
|
| 251 |
+
response10 = None # Initialize response8
|
| 252 |
+
plot10_path = None # Initialize plot8_path
|
| 253 |
+
response11 = None # Initialize response9
|
| 254 |
+
plot11_path = None # Initialize plot9_path
|
| 255 |
+
|
| 256 |
+
if method == "Classification":
|
| 257 |
+
cat_vars = [col for col in df.select_dtypes(include=['object']).columns
|
| 258 |
+
if all(word not in col.lower() for word in excluded_words)]
|
| 259 |
+
|
| 260 |
+
# Exclude the target variable from the list if it exists in cat_vars
|
| 261 |
+
if target in cat_vars:
|
| 262 |
+
cat_vars.remove(target)
|
| 263 |
+
|
| 264 |
+
# Create a figure with subplots, but only include the required number of subplots
|
| 265 |
+
num_cols = len(cat_vars)
|
| 266 |
+
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
|
| 267 |
+
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
|
| 268 |
+
axs = axs.flatten()
|
| 269 |
+
|
| 270 |
+
# Create a count plot for each categorical variable
|
| 271 |
+
for i, var in enumerate(cat_vars):
|
| 272 |
+
top_categories = df[var].value_counts().nlargest(5).index
|
| 273 |
+
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)] # Exclude rows with NaN values in the variable
|
| 274 |
+
|
| 275 |
+
# Replace less frequent categories with "Other" if there are more than 5 unique values
|
| 276 |
+
if df[var].nunique() > 5:
|
| 277 |
+
other_categories = df[var].value_counts().index[5:]
|
| 278 |
+
filtered_df[var] = filtered_df[var].apply(lambda x: x if x in top_categories else 'Other')
|
| 279 |
+
|
| 280 |
+
sns.countplot(x=var, hue=target, stat="percent", data=filtered_df, ax=axs[i])
|
| 281 |
+
axs[i].set_xticklabels(axs[i].get_xticklabels(), rotation=45)
|
| 282 |
+
|
| 283 |
+
# Change y-axis label to represent percentage
|
| 284 |
+
axs[i].set_ylabel('Percentage')
|
| 285 |
+
|
| 286 |
+
# Annotate the subplot with sample size
|
| 287 |
+
sample_size = df.shape[0]
|
| 288 |
+
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
|
| 289 |
+
|
| 290 |
+
# Remove any remaining blank subplots
|
| 291 |
+
for i in range(num_cols, len(axs)):
|
| 292 |
+
fig.delaxes(axs[i])
|
| 293 |
+
|
| 294 |
+
plt.xticks(rotation=45)
|
| 295 |
+
plt.tight_layout()
|
| 296 |
+
plot3_path = "static/multiclass_barplot.png"
|
| 297 |
+
plt.savefig(plot3_path)
|
| 298 |
+
plt.close(fig)
|
| 299 |
+
|
| 300 |
+
#response 3
|
| 301 |
+
def to_markdown(text):
|
| 302 |
+
text = text.replace('•', ' *')
|
| 303 |
+
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
|
| 304 |
+
|
| 305 |
+
genai.configure(api_key=api)
|
| 306 |
+
|
| 307 |
+
import PIL.Image
|
| 308 |
+
|
| 309 |
+
img = PIL.Image.open("static/multiclass_barplot.png")
|
| 310 |
+
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
| 311 |
+
#response = model.generate_content(img)
|
| 312 |
+
response = model.generate_content(["As a marketing consulant, I want to understand consumer insighst based on the chart and the market context so I can use the key findings to formulate actionable insights", img])
|
| 313 |
+
response.resolve()
|
| 314 |
+
response3 = format_text(response.text)
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
if method == "Classification":
|
| 318 |
+
# Generate Multiclass Pairplot
|
| 319 |
+
pairplot_fig = sns.pairplot(df, hue=target)
|
| 320 |
+
plot6_path = "static/pair1.png" # Use plot6_path
|
| 321 |
+
pairplot_fig.savefig(plot6_path) # Save the pairplot as a PNG file
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
# Google Gemini Integration
|
| 325 |
+
genai.configure(api_key=api)
|
| 326 |
+
img = PIL.Image.open(plot6_path)
|
| 327 |
+
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
| 328 |
+
|
| 329 |
+
# Generate response based on the pairplot
|
| 330 |
+
response = model.generate_content([
|
| 331 |
+
"You are a professional Data Analyst, write the complete conclusion and actionable insight based on the image. Explain it by points.",
|
| 332 |
+
img
|
| 333 |
+
])
|
| 334 |
+
response.resolve()
|
| 335 |
+
|
| 336 |
+
# Assign the response to response6
|
| 337 |
+
response6 = format_text(response.text)
|
| 338 |
+
|
| 339 |
+
# Include response6 and plot6_path in the data dictionary to be passed to the template
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
if method == "Classification":
|
| 343 |
+
# Multiclass Histplot
|
| 344 |
+
# Get the names of all columns with data type 'object' (categorical columns)
|
| 345 |
+
cat_cols = df.columns.tolist()
|
| 346 |
+
|
| 347 |
+
# Get the names of all columns with data type 'int'
|
| 348 |
+
int_vars = df.select_dtypes(include=['int', 'float']).columns.tolist()
|
| 349 |
+
int_vars = [col for col in int_vars if col != target]
|
| 350 |
+
|
| 351 |
+
# Create a figure with subplots
|
| 352 |
+
num_cols = len(int_vars)
|
| 353 |
+
num_rows = (num_cols + 2) // 3 # To make sure there are enough rows for the subplots
|
| 354 |
+
fig, axs = plt.subplots(nrows=num_rows, ncols=3, figsize=(15, 5*num_rows))
|
| 355 |
+
axs = axs.flatten()
|
| 356 |
+
|
| 357 |
+
# Create a histogram for each integer variable with hue='Attrition'
|
| 358 |
+
for i, var in enumerate(int_vars):
|
| 359 |
+
top_categories = df[var].value_counts().nlargest(10).index
|
| 360 |
+
filtered_df = df[df[var].notnull() & df[var].isin(top_categories)]
|
| 361 |
+
sns.histplot(data=df, x=var, hue=target, kde=True, ax=axs[i], stat="percent")
|
| 362 |
+
axs[i].set_title(var)
|
| 363 |
+
|
| 364 |
+
# Annotate the subplot with sample size
|
| 365 |
+
sample_size = df.shape[0]
|
| 366 |
+
axs[i].annotate(f'Sample Size = {sample_size}', xy=(0.5, 0.9), xycoords='axes fraction', ha='center', va='center')
|
| 367 |
+
|
| 368 |
+
# Remove any extra empty subplots if needed
|
| 369 |
+
if num_cols < len(axs):
|
| 370 |
+
for i in range(num_cols, len(axs)):
|
| 371 |
+
fig.delaxes(axs[i])
|
| 372 |
+
|
| 373 |
+
# Adjust spacing between subplots
|
| 374 |
+
fig.tight_layout()
|
| 375 |
+
plt.xticks(rotation=45)
|
| 376 |
+
plot4_path = "static/multiclass_histplot.png"
|
| 377 |
+
plt.savefig(plot4_path)
|
| 378 |
+
plt.close(fig)
|
| 379 |
+
|
| 380 |
+
#response 4
|
| 381 |
+
def to_markdown(text):
|
| 382 |
+
text = text.replace('•', ' *')
|
| 383 |
+
return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True))
|
| 384 |
+
|
| 385 |
+
genai.configure(api_key=api)
|
| 386 |
+
|
| 387 |
+
import PIL.Image
|
| 388 |
+
|
| 389 |
+
img = PIL.Image.open("static/multiclass_histplot.png")
|
| 390 |
+
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
| 391 |
+
response4 = model.generate_content(img)
|
| 392 |
+
response4 = model.generate_content(["As a marketing consulant, I want to understand consumer insighst based on the chart and the market context so I can use the key findings to formulate actionable insights", img])
|
| 393 |
+
response4.resolve()
|
| 394 |
+
response4 = format_text(response4.text)
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
# Generate Pairplot
|
| 401 |
+
pairplot_fig = sns.pairplot(df)
|
| 402 |
+
plot5_path = "static/pair2.png"
|
| 403 |
+
pairplot_fig.savefig(plot5_path) # Save the pairplot as a PNG file
|
| 404 |
+
|
| 405 |
+
# Google Gemini Integration
|
| 406 |
+
genai.configure(api_key=api)
|
| 407 |
+
img = PIL.Image.open(plot5_path)
|
| 408 |
+
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
| 409 |
+
|
| 410 |
+
# Generate response based on the pairplot
|
| 411 |
+
response = model.generate_content([
|
| 412 |
+
"You are a professional Data Analyst, write the complete conclusion and actionable insight based on the image. Explain it by points.",
|
| 413 |
+
img
|
| 414 |
+
])
|
| 415 |
+
response.resolve()
|
| 416 |
+
|
| 417 |
+
# Assign the response to response5
|
| 418 |
+
response5 = format_text(response.text)
|
| 419 |
+
|
| 420 |
+
def generate_gemini_response(plot_path):
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
genai.configure(api_key=api)
|
| 424 |
+
img = Image.open(plot_path)
|
| 425 |
+
model = genai.GenerativeModel('gemini-1.5-flash-latest')
|
| 426 |
+
response = model.generate_content([
|
| 427 |
+
" As a marketing consultant, I want to understand consumer insights based on the chart and the market context so I can use the key findings to formulate actionable insights",
|
| 428 |
+
img
|
| 429 |
+
])
|
| 430 |
+
response.resolve()
|
| 431 |
+
return response.text
|
| 432 |
+
|
| 433 |
+
plot1_path = generate_plot(df, 'static/plot1.png', 'countplot')
|
| 434 |
+
plot2_path = generate_plot(df, 'static/plot2.png', 'histplot')
|
| 435 |
+
|
| 436 |
+
response1 = format_text((generate_gemini_response(plot1_path)))
|
| 437 |
+
response2 = format_text((generate_gemini_response(plot2_path)))
|
| 438 |
+
|
| 439 |
+
from sklearn import preprocessing
|
| 440 |
+
for col in df.select_dtypes(include=['object']).columns:
|
| 441 |
+
|
| 442 |
+
# Initialize a LabelEncoder object
|
| 443 |
+
label_encoder = preprocessing.LabelEncoder()
|
| 444 |
+
|
| 445 |
+
# Fit the encoder to the unique values in the column
|
| 446 |
+
label_encoder.fit(df[col].unique())
|
| 447 |
+
|
| 448 |
+
# Transform the column using the encoder
|
| 449 |
+
df[col] = label_encoder.transform(df[col])
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
# Display Correlation Heatmap
|
| 453 |
+
plot7_path = "static/correlation_matrix.png"
|
| 454 |
+
fig, ax = plt.subplots(figsize=(30, 24))
|
| 455 |
+
correlation_matrix = df.corr()
|
| 456 |
+
sns.heatmap(correlation_matrix, annot=True, fmt='.2f', cmap='coolwarm', ax=ax)
|
| 457 |
+
plt.savefig(plot7_path)
|
| 458 |
+
plt.close(fig)
|
| 459 |
+
|
| 460 |
+
img = PIL.Image.open(plot7_path)
|
| 461 |
+
response7 = format_text((generate_gemini_response(plot7_path)))
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
X = df.drop(target, axis=1)
|
| 468 |
+
y = df[target]
|
| 469 |
+
from sklearn.model_selection import train_test_split
|
| 470 |
+
from sklearn.metrics import accuracy_score
|
| 471 |
+
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2,random_state=0)
|
| 472 |
+
|
| 473 |
+
from scipy import stats
|
| 474 |
+
threshold = 3
|
| 475 |
+
|
| 476 |
+
for col in X_train.columns:
|
| 477 |
+
if X_train[col].nunique() > 20:
|
| 478 |
+
# Calculate Z-scores for the column
|
| 479 |
+
z_scores = np.abs(stats.zscore(X_train[col]))
|
| 480 |
+
# Find and remove outliers based on the threshold
|
| 481 |
+
outlier_indices = np.where(z_scores > threshold)[0]
|
| 482 |
+
X_train = X_train.drop(X_train.index[outlier_indices])
|
| 483 |
+
y_train = y_train.drop(y_train.index[outlier_indices])
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
from sklearn.tree import DecisionTreeRegressor
|
| 489 |
+
from sklearn.tree import DecisionTreeClassifier
|
| 490 |
+
from sklearn.model_selection import GridSearchCV
|
| 491 |
+
from sklearn import metrics
|
| 492 |
+
from sklearn.metrics import mean_absolute_percentage_error
|
| 493 |
+
import math
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
if algorithm == "Decision Tree":
|
| 497 |
+
|
| 498 |
+
if method == "Regression":
|
| 499 |
+
dtree = DecisionTreeRegressor()
|
| 500 |
+
param_grid = {
|
| 501 |
+
'max_depth': [4, 6, 8],
|
| 502 |
+
'min_samples_split': [4, 6, 8],
|
| 503 |
+
'min_samples_leaf': [1, 2, 3, 4],
|
| 504 |
+
'random_state': [0, 42],
|
| 505 |
+
'max_features': ['auto', 'sqrt', 'log2']
|
| 506 |
+
}
|
| 507 |
+
grid_search = GridSearchCV(dtree, param_grid, cv=5, scoring='neg_mean_squared_error')
|
| 508 |
+
grid_search.fit(X_train, y_train)
|
| 509 |
+
best_params = grid_search.best_params_
|
| 510 |
+
dtree = DecisionTreeRegressor(**best_params)
|
| 511 |
+
dtree.fit(X_train, y_train)
|
| 512 |
+
|
| 513 |
+
y_pred = dtree.predict(X_test)
|
| 514 |
+
mae = metrics.mean_absolute_error(y_test, y_pred)
|
| 515 |
+
mse = metrics.mean_squared_error(y_test, y_pred)
|
| 516 |
+
r2 = metrics.r2_score(y_test, y_pred)
|
| 517 |
+
rmse = np.sqrt(mse)
|
| 518 |
+
|
| 519 |
+
# Feature importance visualization
|
| 520 |
+
imp_df = pd.DataFrame({
|
| 521 |
+
"Feature Name": X_train.columns,
|
| 522 |
+
"Importance": dtree.feature_importances_
|
| 523 |
+
})
|
| 524 |
+
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
|
| 525 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 526 |
+
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
|
| 527 |
+
ax.set_title('Top 10 Feature Importance (Decision Tree Regressor)', fontsize=18)
|
| 528 |
+
plot8_path = "static/dtree_regressor.png"
|
| 529 |
+
plt.savefig(plot8_path)
|
| 530 |
+
img = PIL.Image.open(plot8_path)
|
| 531 |
+
response8 = format_text((generate_gemini_response(plot8_path)))
|
| 532 |
+
|
| 533 |
+
|
| 534 |
+
elif method == "Classification":
|
| 535 |
+
dtree = DecisionTreeClassifier()
|
| 536 |
+
param_grid = {
|
| 537 |
+
'max_depth': [3, 4, 5, 6, 7],
|
| 538 |
+
'min_samples_split': [2, 3, 4],
|
| 539 |
+
'min_samples_leaf': [1, 2, 3],
|
| 540 |
+
'random_state': [0, 42]
|
| 541 |
+
}
|
| 542 |
+
grid_search = GridSearchCV(dtree, param_grid, cv=5)
|
| 543 |
+
grid_search.fit(X_train, y_train)
|
| 544 |
+
best_params = grid_search.best_params_
|
| 545 |
+
dtree = DecisionTreeClassifier(**best_params)
|
| 546 |
+
dtree.fit(X_train, y_train)
|
| 547 |
+
|
| 548 |
+
y_pred = dtree.predict(X_test)
|
| 549 |
+
acc = metrics.accuracy_score(y_test, y_pred)
|
| 550 |
+
f1 = metrics.f1_score(y_test, y_pred, average='micro')
|
| 551 |
+
prec = metrics.precision_score(y_test, y_pred, average='micro')
|
| 552 |
+
recall = metrics.recall_score(y_test, y_pred, average='micro')
|
| 553 |
+
|
| 554 |
+
# Feature importance visualization
|
| 555 |
+
imp_df = pd.DataFrame({
|
| 556 |
+
"Feature Name": X_train.columns,
|
| 557 |
+
"Importance": dtree.feature_importances_
|
| 558 |
+
})
|
| 559 |
+
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
|
| 560 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 561 |
+
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
|
| 562 |
+
ax.set_title('Top 10 Feature Importance (Decision Tree Classifier)', fontsize=18)
|
| 563 |
+
plot9_path = "static/dtree_classifier.png"
|
| 564 |
+
plt.savefig(plot9_path)
|
| 565 |
+
img = PIL.Image.open(plot9_path)
|
| 566 |
+
response9 = format_text((generate_gemini_response(plot9_path)))
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
|
| 570 |
+
from sklearn.ensemble import RandomForestRegressor
|
| 571 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 572 |
+
|
| 573 |
+
if algorithm == "Random Forest":
|
| 574 |
+
|
| 575 |
+
if method == "Regression":
|
| 576 |
+
rf = RandomForestRegressor()
|
| 577 |
+
param_grid = {
|
| 578 |
+
'max_depth': [4, 6, 8],
|
| 579 |
+
'random_state': [0, 42],
|
| 580 |
+
'max_features': ['auto', 'sqrt', 'log2']
|
| 581 |
+
}
|
| 582 |
+
grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='neg_mean_squared_error')
|
| 583 |
+
grid_search.fit(X_train, y_train)
|
| 584 |
+
best_params = grid_search.best_params_
|
| 585 |
+
rf = RandomForestRegressor(**best_params)
|
| 586 |
+
rf.fit(X_train, y_train)
|
| 587 |
+
|
| 588 |
+
y_pred = rf.predict(X_test)
|
| 589 |
+
mae = metrics.mean_absolute_error(y_test, y_pred)
|
| 590 |
+
mse = metrics.mean_squared_error(y_test, y_pred)
|
| 591 |
+
r2 = metrics.r2_score(y_test, y_pred)
|
| 592 |
+
rmse = np.sqrt(mse)
|
| 593 |
+
|
| 594 |
+
# Feature importance visualization
|
| 595 |
+
imp_df = pd.DataFrame({
|
| 596 |
+
"Feature Name": X_train.columns,
|
| 597 |
+
"Importance": rf.feature_importances_
|
| 598 |
+
})
|
| 599 |
+
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
|
| 600 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 601 |
+
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
|
| 602 |
+
ax.set_title('Top 10 Feature Importance (Random Forest Regressor)', fontsize=18)
|
| 603 |
+
plot10_path = "static/rf_regressor.png"
|
| 604 |
+
plt.savefig(plot10_path)
|
| 605 |
+
img = PIL.Image.open(plot10_path)
|
| 606 |
+
response10 = format_text((generate_gemini_response(plot10_path)))
|
| 607 |
+
|
| 608 |
+
elif method == "Classification":
|
| 609 |
+
rf = RandomForestClassifier()
|
| 610 |
+
param_grid = {
|
| 611 |
+
'max_depth': [3, 4, 5, 6],
|
| 612 |
+
'random_state': [0, 42]
|
| 613 |
+
}
|
| 614 |
+
grid_search = GridSearchCV(rf, param_grid, cv=5)
|
| 615 |
+
grid_search.fit(X_train, y_train)
|
| 616 |
+
best_params = grid_search.best_params_
|
| 617 |
+
rf = RandomForestClassifier(**best_params)
|
| 618 |
+
rf.fit(X_train, y_train)
|
| 619 |
+
|
| 620 |
+
y_pred = rf.predict(X_test)
|
| 621 |
+
acc = metrics.accuracy_score(y_test, y_pred)
|
| 622 |
+
f1 = metrics.f1_score(y_test, y_pred, average='micro')
|
| 623 |
+
prec = metrics.precision_score(y_test, y_pred, average='micro')
|
| 624 |
+
recall = metrics.recall_score(y_test, y_pred, average='micro')
|
| 625 |
+
|
| 626 |
+
# Feature importance visualization
|
| 627 |
+
imp_df = pd.DataFrame({
|
| 628 |
+
"Feature Name": X_train.columns,
|
| 629 |
+
"Importance": rf.feature_importances_
|
| 630 |
+
})
|
| 631 |
+
fi = imp_df.sort_values(by="Importance", ascending=False).head(10)
|
| 632 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 633 |
+
sns.barplot(data=fi, x='Importance', y='Feature Name', ax=ax)
|
| 634 |
+
ax.set_title('Top 10 Feature Importance (Random Forest Classifier)', fontsize=18)
|
| 635 |
+
plot11_path = "static/rf_classifier.png"
|
| 636 |
+
plt.savefig(plot11_path)
|
| 637 |
+
img = PIL.Image.open(plot11_path)
|
| 638 |
+
response11 = format_text((generate_gemini_response(plot11_path)))
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
|
| 642 |
+
document_analyzed = True
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
data = {
|
| 647 |
+
"request": request,
|
| 648 |
+
"response1": response1,
|
| 649 |
+
"response2": response2,
|
| 650 |
+
"response5": response5,
|
| 651 |
+
"response7": response7,
|
| 652 |
+
"plot1_path": plot1_path,
|
| 653 |
+
"plot2_path": plot2_path,
|
| 654 |
+
"plot5_path": plot5_path,
|
| 655 |
+
"plot7_path": plot7_path,
|
| 656 |
+
"show_conversation": document_analyzed,
|
| 657 |
+
"question_responses": question_responses
|
| 658 |
+
}
|
| 659 |
+
|
| 660 |
+
# Conditionally include response3 and plot3_path if they exist
|
| 661 |
+
if response3:
|
| 662 |
+
data["response3"] = response3
|
| 663 |
+
if plot3_path:
|
| 664 |
+
data["plot3_path"] = plot3_path
|
| 665 |
+
if response4:
|
| 666 |
+
data["response4"] = response3
|
| 667 |
+
if plot4_path:
|
| 668 |
+
data["plot4_path"] = plot4_path
|
| 669 |
+
if response6:
|
| 670 |
+
data["response6"] = response6
|
| 671 |
+
if plot6_path:
|
| 672 |
+
data["plot6_path"] = plot6_path
|
| 673 |
+
if response8:
|
| 674 |
+
data["response8"] = response8
|
| 675 |
+
if plot8_path:
|
| 676 |
+
data["plot8_path"] = plot8_path
|
| 677 |
+
if response9:
|
| 678 |
+
data["response9"] = response9
|
| 679 |
+
if plot9_path:
|
| 680 |
+
data["plot9_path"] = plot9_path
|
| 681 |
+
if response10:
|
| 682 |
+
data["response10"] = response10
|
| 683 |
+
if plot10_path:
|
| 684 |
+
data["plot10_path"] = plot10_path
|
| 685 |
+
if response11:
|
| 686 |
+
data["response11"] = response11
|
| 687 |
+
if plot11_path:
|
| 688 |
+
data["plot11_path"] = plot11_path
|
| 689 |
+
|
| 690 |
+
return templates.TemplateResponse("upload.html", data)
|
| 691 |
+
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
# Route for asking questions
|
| 696 |
+
@app.post("/ask", response_class=HTMLResponse)
|
| 697 |
+
async def ask_question(request: Request, question: str = Form(...)):
|
| 698 |
+
global file_extension, question_responses, api
|
| 699 |
+
global plot1_path, plot2_path, plot3_path, plot4_path, plot5_path, plot6_path, plot7_path, plot8_path, plot9_path, plot10_path, plot11_path
|
| 700 |
+
global response1, response2, response3, response4, response5, response6, response7, response8, response9, response10, response11
|
| 701 |
+
global document_analyzed
|
| 702 |
+
|
| 703 |
+
# Check if a file has been uploaded
|
| 704 |
+
if not file_extension:
|
| 705 |
+
raise HTTPException(status_code=400, detail="No file has been uploaded yet.")
|
| 706 |
+
|
| 707 |
+
# Initialize the LLM model
|
| 708 |
+
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest", google_api_key=api)
|
| 709 |
+
|
| 710 |
+
# Determine the file extension and select the appropriate loader
|
| 711 |
+
file_path = ''
|
| 712 |
+
loader = None
|
| 713 |
+
|
| 714 |
+
if file_extension.endswith('.csv'):
|
| 715 |
+
file_path = 'dataset.csv'
|
| 716 |
+
loader = UnstructuredCSVLoader(file_path, mode="elements")
|
| 717 |
+
elif file_extension.endswith('.xlsx'):
|
| 718 |
+
file_path = 'dataset.xlsx'
|
| 719 |
+
loader = UnstructuredExcelLoader(file_path, mode="elements")
|
| 720 |
+
else:
|
| 721 |
+
raise HTTPException(status_code=400, detail="Unsupported file format")
|
| 722 |
+
|
| 723 |
+
# Load and process the document
|
| 724 |
+
try:
|
| 725 |
+
docs = loader.load()
|
| 726 |
+
except Exception as e:
|
| 727 |
+
raise HTTPException(status_code=500, detail=f"Error loading document: {str(e)}")
|
| 728 |
+
|
| 729 |
+
# Combine document text
|
| 730 |
+
text = "\n".join([doc.page_content for doc in docs])
|
| 731 |
+
os.environ["GOOGLE_API_KEY"] = api
|
| 732 |
+
|
| 733 |
+
# Initialize embeddings and create FAISS vector store
|
| 734 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
| 735 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 736 |
+
chunks = text_splitter.split_text(text)
|
| 737 |
+
document_search = FAISS.from_texts(chunks, embeddings)
|
| 738 |
+
|
| 739 |
+
# Generate query embedding and perform similarity search
|
| 740 |
+
query_embedding = embeddings.embed_query(question)
|
| 741 |
+
results = document_search.similarity_search_by_vector(query_embedding, k=3)
|
| 742 |
+
|
| 743 |
+
if results:
|
| 744 |
+
retrieved_texts = " ".join([result.page_content for result in results])
|
| 745 |
+
|
| 746 |
+
# Define the Summarize Chain for the question
|
| 747 |
+
latest_response = "" if not question_responses else question_responses[-1][1]
|
| 748 |
+
template1 = (
|
| 749 |
+
f"{question} Answer the question based on the following:\n\"{text}\"\n:" +
|
| 750 |
+
(f" Answer the Question with only 3 sentences. Latest conversation: {latest_response}" if latest_response else "")
|
| 751 |
+
)
|
| 752 |
+
prompt1 = PromptTemplate.from_template(template1)
|
| 753 |
+
|
| 754 |
+
# Initialize the LLMChain with the prompt
|
| 755 |
+
llm_chain1 = LLMChain(llm=llm, prompt=prompt1)
|
| 756 |
+
|
| 757 |
+
# Invoke the chain to get the summary
|
| 758 |
+
try:
|
| 759 |
+
response_chain = llm_chain1.invoke({"text": text})
|
| 760 |
+
summary1 = response_chain["text"]
|
| 761 |
+
except Exception as e:
|
| 762 |
+
raise HTTPException(status_code=500, detail=f"Error invoking LLMChain: {str(e)}")
|
| 763 |
+
|
| 764 |
+
# Generate embeddings for the summary
|
| 765 |
+
try:
|
| 766 |
+
summary_embedding = embeddings.embed_query(summary1)
|
| 767 |
+
document_search = FAISS.from_texts([summary1], embeddings)
|
| 768 |
+
except Exception as e:
|
| 769 |
+
raise HTTPException(status_code=500, detail=f"Error generating embeddings: {str(e)}")
|
| 770 |
+
|
| 771 |
+
# Perform a search on the FAISS vector database
|
| 772 |
+
try:
|
| 773 |
+
if document_search:
|
| 774 |
+
query_embedding = embeddings.embed_query(question)
|
| 775 |
+
results = document_search.similarity_search_by_vector(query_embedding, k=1)
|
| 776 |
+
|
| 777 |
+
if results:
|
| 778 |
+
current_response = format_text(results[0].page_content)
|
| 779 |
+
else:
|
| 780 |
+
current_response = "No matching document found in the database."
|
| 781 |
+
else:
|
| 782 |
+
current_response = "Vector database not initialized."
|
| 783 |
+
except Exception as e:
|
| 784 |
+
raise HTTPException(status_code=500, detail=f"Error during similarity search: {str(e)}")
|
| 785 |
+
else:
|
| 786 |
+
current_response = "No relevant results found."
|
| 787 |
+
|
| 788 |
+
# Append the question and response from FAISS search
|
| 789 |
+
current_question = f"You asked: {question}"
|
| 790 |
+
question_responses.append((current_question, current_response))
|
| 791 |
+
|
| 792 |
+
# Save all results to output_summary.json
|
| 793 |
+
save_to_json(question_responses)
|
| 794 |
+
|
| 795 |
+
|
| 796 |
+
|
| 797 |
+
data = {
|
| 798 |
+
"request": request,
|
| 799 |
+
"response1": response1,
|
| 800 |
+
"response2": response2,
|
| 801 |
+
"response5": response5,
|
| 802 |
+
"response7": response7,
|
| 803 |
+
"plot1_path": plot1_path,
|
| 804 |
+
"plot2_path": plot2_path,
|
| 805 |
+
"plot5_path": plot5_path,
|
| 806 |
+
"plot7_path": plot7_path,
|
| 807 |
+
"show_conversation": True,
|
| 808 |
+
"question_responses": question_responses
|
| 809 |
+
}
|
| 810 |
+
|
| 811 |
+
# Conditionally include response3 and plot3_path if they exist
|
| 812 |
+
if response3:
|
| 813 |
+
data["response3"] = response3
|
| 814 |
+
if plot3_path:
|
| 815 |
+
data["plot3_path"] = plot3_path
|
| 816 |
+
if response4:
|
| 817 |
+
data["response4"] = response3
|
| 818 |
+
if plot4_path:
|
| 819 |
+
data["plot4_path"] = plot4_path
|
| 820 |
+
if response6:
|
| 821 |
+
data["response6"] = response6
|
| 822 |
+
if plot6_path:
|
| 823 |
+
data["plot6_path"] = plot6_path
|
| 824 |
+
if response8:
|
| 825 |
+
data["response8"] = response8
|
| 826 |
+
if plot8_path:
|
| 827 |
+
data["plot8_path"] = plot8_path
|
| 828 |
+
if response9:
|
| 829 |
+
data["response9"] = response9
|
| 830 |
+
if plot9_path:
|
| 831 |
+
data["plot9_path"] = plot9_path
|
| 832 |
+
if response10:
|
| 833 |
+
data["response10"] = response10
|
| 834 |
+
if plot10_path:
|
| 835 |
+
data["plot10_path"] = plot10_path
|
| 836 |
+
if response11:
|
| 837 |
+
data["response11"] = response11
|
| 838 |
+
if plot11_path:
|
| 839 |
+
data["plot11_path"] = plot11_path
|
| 840 |
+
|
| 841 |
+
return templates.TemplateResponse("upload.html", data)
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
|
| 845 |
+
def save_to_json(question_responses):
|
| 846 |
+
outputs = {
|
| 847 |
+
"question_responses": question_responses
|
| 848 |
+
}
|
| 849 |
+
with open("output_summary.json", "w") as outfile:
|
| 850 |
+
json.dump(outputs, outfile)
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
|
|
|
|
|
|