Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,94 +1,93 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
|
| 3 |
-
import gradio as gr
|
| 4 |
-
import operator
|
| 5 |
-
import torch
|
| 6 |
-
from transformers import BertTokenizer, BertForMaskedLM
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
corrected_text =
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
"
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
"
|
| 74 |
-
"
|
| 75 |
-
"
|
| 76 |
-
"
|
| 77 |
-
"
|
| 78 |
-
"
|
| 79 |
-
"
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import operator
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import BertTokenizer, BertForMaskedLM
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v2"
|
| 10 |
+
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path)
|
| 11 |
+
model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path)
|
| 12 |
+
vocab = tokenizer.vocab
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def func_macro_correct(text):
|
| 16 |
+
with torch.no_grad():
|
| 17 |
+
outputs = model(**tokenizer([text], padding=True, return_tensors='pt'))
|
| 18 |
+
|
| 19 |
+
def flag_total_chinese(text):
|
| 20 |
+
"""
|
| 21 |
+
judge is total chinese or not, 判断是不是全是中文
|
| 22 |
+
Args:
|
| 23 |
+
text: str, eg. "macadam, 碎石路"
|
| 24 |
+
Returns:
|
| 25 |
+
bool, True or False
|
| 26 |
+
"""
|
| 27 |
+
for word in text:
|
| 28 |
+
if not "\u4e00" <= word <= "\u9fa5":
|
| 29 |
+
return False
|
| 30 |
+
return True
|
| 31 |
+
|
| 32 |
+
def get_errors(corrected_text, origin_text, unk_tokens=[], know_tokens=[]):
|
| 33 |
+
"""Get new corrected text and errors between corrected text and origin text
|
| 34 |
+
code from: https://github.com/shibing624/pycorrector
|
| 35 |
+
"""
|
| 36 |
+
errors = []
|
| 37 |
+
unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', '', ',']
|
| 38 |
+
|
| 39 |
+
for i, ori_char in enumerate(origin_text):
|
| 40 |
+
if i >= len(corrected_text):
|
| 41 |
+
continue
|
| 42 |
+
if ori_char in unk_tokens or ori_char not in know_tokens:
|
| 43 |
+
# deal with unk word
|
| 44 |
+
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
|
| 45 |
+
continue
|
| 46 |
+
if ori_char != corrected_text[i]:
|
| 47 |
+
if not flag_total_chinese(ori_char):
|
| 48 |
+
# pass not chinese char
|
| 49 |
+
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
|
| 50 |
+
continue
|
| 51 |
+
if not flag_total_chinese(corrected_text[i]):
|
| 52 |
+
corrected_text = corrected_text[:i] + corrected_text[i + 1:]
|
| 53 |
+
continue
|
| 54 |
+
errors.append([ori_char, corrected_text[i], i])
|
| 55 |
+
errors = sorted(errors, key=operator.itemgetter(2))
|
| 56 |
+
return corrected_text, errors
|
| 57 |
+
|
| 58 |
+
_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
|
| 59 |
+
corrected_text = _text[:len(text)]
|
| 60 |
+
corrected_text, details = get_errors(corrected_text, text, know_tokens=vocab)
|
| 61 |
+
print(text, ' => ', corrected_text, details)
|
| 62 |
+
return corrected_text + ' ' + str(details)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
if __name__ == '__main__':
|
| 66 |
+
print(func_macro_correct('他法语说的很好,的语也不错'))
|
| 67 |
+
|
| 68 |
+
examples = [
|
| 69 |
+
"夫谷之雨,犹复云之亦从的起,因与疾风俱飘,参于天,集于的。",
|
| 70 |
+
"机七学习是人工智能领遇最能体现智能的一个分知",
|
| 71 |
+
'他们的吵翻很不错,再说他们做的咖喱鸡也好吃',
|
| 72 |
+
"抗疫路上,除了提心吊胆也有难的得欢笑。",
|
| 73 |
+
"我是练习时长两念半的鸽仁练习生蔡徐坤",
|
| 74 |
+
"清晨,如纱一般地薄雾笼罩着世界。",
|
| 75 |
+
"得府许我立庙于此,故请君移去尔。",
|
| 76 |
+
"他法语说的很好,的语也不错",
|
| 77 |
+
"遇到一位很棒的奴生跟我疗天",
|
| 78 |
+
"五年级得数学,我考的很差。",
|
| 79 |
+
"我们为这个目标努力不解",
|
| 80 |
+
'今天兴情很好',
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
gr.Interface(
|
| 84 |
+
func_macro_correct,
|
| 85 |
+
inputs='text',
|
| 86 |
+
outputs='text',
|
| 87 |
+
title="Chinese Spelling Correction Model Macropodus/macbert4mdcspell_v2",
|
| 88 |
+
description="Copy or input error Chinese text. Submit and the machine will correct text.",
|
| 89 |
+
article="Link to <a href='https://github.com/yongzhuo/macro-correct' style='color:blue;' target='_blank\'>Github REPO: macro-correct</a>",
|
| 90 |
+
examples=examples
|
| 91 |
+
).launch(server_name="0.0.0.0", server_port=8036, share=False, debug=True)
|
| 92 |
+
|
| 93 |
+
|
|
|