Spaces:
Running
Running
| # !/usr/bin/python | |
| # -*- coding: utf-8 -*- | |
| # @time : 2021/2/29 21:41 | |
| # @author : Mo | |
| # @function: transformers直接加载bert类模型测试 | |
| import traceback | |
| import copy | |
| import time | |
| import sys | |
| import os | |
| import re | |
| os.environ["MACRO_CORRECT_FLAG_CSC_TOKEN"] = "1" | |
| os.environ["CUDA_VISIBLE_DEVICES"] = "-1" | |
| os.environ["USE_TORCH"] = "1" | |
| from macro_correct.pytorch_textcorrection.tcTools import preprocess_same_with_training | |
| from macro_correct.pytorch_textcorrection.tcTools import get_errors_for_difflib | |
| from macro_correct.pytorch_textcorrection.tcTools import cut_sent_by_maxlen | |
| from macro_correct.pytorch_textcorrection.tcTools import count_flag_zh | |
| from macro_correct import correct_basic | |
| from macro_correct import correct_long | |
| from macro_correct import correct | |
| import gradio as gr | |
| # pyinstaller -F xxxx.py | |
| # pretrained_model_name_or_path = "shibing624/macbert4csc-base-chinese" | |
| pretrained_model_name_or_path = "Macadam/macbert4mdcspell_v2" | |
| # pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v1" | |
| # pretrained_model_name_or_path = "Macropodus/macbert4csc_v1" | |
| # pretrained_model_name_or_path = "Macropodus/macbert4csc_v2" | |
| # pretrained_model_name_or_path = "Macropodus/bert4csc_v1" | |
| # device = torch.device("cpu") | |
| # device = torch.device("cuda") | |
| def cut_sent_by_stay_and_maxlen(text, max_len=126, return_length=True): | |
| """ | |
| 分句但是保存原标点符号, 如果长度还是太长的话就切为固定长度的句子 | |
| Args: | |
| text: str, sentence of input text; | |
| max_len: int, max_len of traing texts; | |
| return_length: bool, wether return length or not | |
| Returns: | |
| res: List<tuple> | |
| """ | |
| ### text_sp = re.split(r"!”|?”|。”|……”|”!|”?|”。|”……|》。|)。|!|?|。|…|\!|\?", text) | |
| text_sp = re.split(r"[》)!?。…”;;!?\n]+", text) | |
| conn_symbol = "!?。…”;;!?》)\n" | |
| text_length_s = [] | |
| text_cut = [] | |
| len_text = len(text) - 1 | |
| # signal_symbol = "—”>;?…)‘《’(·》“~,、!。:<" | |
| len_global = 0 | |
| for idx, text_sp_i in enumerate(text_sp): | |
| text_cut_idx = text_sp[idx] | |
| len_global_before = copy.deepcopy(len_global) | |
| len_global += len(text_sp_i) | |
| while True: | |
| if len_global <= len_text and text[len_global] in conn_symbol: | |
| text_cut_idx += text[len_global] | |
| else: | |
| # len_global += 1 | |
| if text_cut_idx: | |
| ### 如果标点符号依旧切分不了, 就强行切 | |
| if len(text_cut_idx) > max_len: | |
| text_cut_i, text_length_s_i = cut_sent_by_maxlen( | |
| text=text, max_len=max_len, return_length=True) | |
| text_length_s.extend(text_length_s_i) | |
| text_cut.extend(text_cut_i) | |
| else: | |
| text_length_s.append([len_global_before, len_global]) | |
| text_cut.append(text_cut_idx) | |
| break | |
| len_global += 1 | |
| if return_length: | |
| return text_cut, text_length_s | |
| return text_cut | |
| def macro_correct(text): | |
| print(text) | |
| texts, texts_length = cut_sent_by_stay_and_maxlen(text, return_length=True) | |
| text_str = "" | |
| text_list = [] | |
| for t in texts: | |
| print(t) | |
| t_process = preprocess_same_with_training(t) | |
| text_csc = correct_long(t_process, num_rethink=1, flag_cut=True, limit_length_char=1) | |
| print(text_csc) | |
| ### 繁简 | |
| if t != t_process: | |
| t_correct, errors = get_errors_for_difflib(t_process, t) | |
| errors_new = [] | |
| for err in errors: | |
| if count_flag_zh(err[0]) and count_flag_zh(err[1]): | |
| errors_new.append(err + [1]) | |
| if errors_new: | |
| if text_csc: | |
| text_csc[0]["errors"] += errors_new | |
| else: | |
| text_csc = [{"source": t, "target": t_process, "errors": errors_new}] | |
| ### 本身的错误 | |
| if text_csc: | |
| text_list.extend(text_csc) | |
| text_str += text_csc[0].get("target") | |
| else: | |
| text_list.extend([{}]) | |
| text_str += t | |
| text_str += "\n" + "#" * 32 + "\n" | |
| for tdx, t in enumerate(text_list): | |
| if t: | |
| for tk, tv in t.items(): | |
| if tk == "index": | |
| text_str += f"idx: {str(tdx+1)}\n" | |
| else: | |
| text_str += f"{str(tk).strip()}: {str(tv).strip()}\n" | |
| text_str += "\n" | |
| return text_str | |
| if __name__ == '__main__': | |
| print(macro_correct('少先队员因该为老人让坐')) | |
| examples = [ | |
| "机七学习是人工智能领遇最能体现智能的一个分知", | |
| "我是练习时长两念半的鸽仁练习生蔡徐坤", | |
| "真麻烦你了。希望你们好好的跳无", | |
| "他法语说的很好,的语也不错", | |
| "遇到一位很棒的奴生跟我疗天", | |
| "我们为这个目标努力不解", | |
| ] | |
| gr.Interface( | |
| macro_correct, | |
| inputs='text', | |
| outputs='text', | |
| title="Chinese Spelling Correction Model Macropodus/macbert4csc_v2", | |
| description="Copy or input error Chinese text. Submit and the machine will correct text.", | |
| article="Link to <a href='https://github.com/yongzhuo/macro-correct' style='color:blue;' target='_blank\'>Github REPO: macro-correct</a>", | |
| examples=examples | |
| ).launch() | |
| # ).launch(server_name="0.0.0.0", server_port=8066, share=False, debug=True) | |