Spaces:
Running
Running
Upload 2 files
Browse files- macro-correct.py +114 -0
- requirements.txt +3 -0
macro-correct.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# !/usr/bin/python
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
# @time : 2021/2/29 21:41
|
| 4 |
+
# @author : Mo
|
| 5 |
+
# @function: transformers直接加载bert类模型测试
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
import traceback
|
| 9 |
+
import time
|
| 10 |
+
import sys
|
| 11 |
+
import os
|
| 12 |
+
os.environ["USE_TORCH"] = "1"
|
| 13 |
+
|
| 14 |
+
from transformers import BertConfig, BertTokenizer, BertForMaskedLM
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import torch
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# pretrained_model_name_or_path = "shibing624/macbert4csc-base-chinese"
|
| 21 |
+
pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v1"
|
| 22 |
+
# pretrained_model_name_or_path = "Macropodus/macbert4csc_v1"
|
| 23 |
+
# pretrained_model_name_or_path = "Macropodus/macbert4csc_v2"
|
| 24 |
+
# pretrained_model_name_or_path = "Macropodus/bert4csc_v1"
|
| 25 |
+
device = torch.device("cpu")
|
| 26 |
+
# device = torch.device("cuda")
|
| 27 |
+
max_len = 128
|
| 28 |
+
|
| 29 |
+
print("load model, please wait a few minute!")
|
| 30 |
+
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path)
|
| 31 |
+
bert_config = BertConfig.from_pretrained(pretrained_model_name_or_path)
|
| 32 |
+
model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path)
|
| 33 |
+
model.to(device)
|
| 34 |
+
print("load model success!")
|
| 35 |
+
|
| 36 |
+
texts = [
|
| 37 |
+
"机七学习是人工智能领遇最能体现智能的一个分知",
|
| 38 |
+
"我是练习时长两念半的鸽仁练习生蔡徐坤",
|
| 39 |
+
]
|
| 40 |
+
len_mid = min(max_len, max([len(t)+2 for t in texts]))
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = model(**tokenizer(texts, padding=True, max_length=len_mid,
|
| 44 |
+
return_tensors="pt").to(device))
|
| 45 |
+
|
| 46 |
+
def get_errors(source, target):
|
| 47 |
+
""" 极简方法获取 errors """
|
| 48 |
+
len_min = min(len(source), len(target))
|
| 49 |
+
errors = []
|
| 50 |
+
for idx in range(len_min):
|
| 51 |
+
if source[idx] != target[idx]:
|
| 52 |
+
errors.append([source[idx], target[idx], idx])
|
| 53 |
+
return errors
|
| 54 |
+
|
| 55 |
+
result = []
|
| 56 |
+
for probs, source in zip(outputs.logits, texts):
|
| 57 |
+
ids = torch.argmax(probs, dim=-1)
|
| 58 |
+
tokens_space = tokenizer.decode(ids[1:-1], skip_special_tokens=False)
|
| 59 |
+
text_new = tokens_space.replace(" ", "")
|
| 60 |
+
target = text_new[:len(source)]
|
| 61 |
+
errors = get_errors(source, target)
|
| 62 |
+
print(source, " => ", target, errors)
|
| 63 |
+
result.append([target, errors])
|
| 64 |
+
print(result)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def macro_correct(text):
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
outputs = model(**tokenizer([text], padding=True, max_length=max_len,
|
| 70 |
+
return_tensors="pt").to(device))
|
| 71 |
+
|
| 72 |
+
def to_highlight(corrected_sent, errs):
|
| 73 |
+
output = [{"entity": "纠错", "word": err[1], "start": err[2], "end": err[3]} for i, err in
|
| 74 |
+
enumerate(errs)]
|
| 75 |
+
return {"text": corrected_sent, "entities": output}
|
| 76 |
+
|
| 77 |
+
def get_errors(source, target):
|
| 78 |
+
""" 极简方法获取 errors """
|
| 79 |
+
len_min = min(len(source), len(target))
|
| 80 |
+
errors = []
|
| 81 |
+
for idx in range(len_min):
|
| 82 |
+
if source[idx] != target[idx]:
|
| 83 |
+
errors.append([source[idx], target[idx], idx])
|
| 84 |
+
return errors
|
| 85 |
+
|
| 86 |
+
result = []
|
| 87 |
+
for probs, source in zip(outputs.logits, texts):
|
| 88 |
+
ids = torch.argmax(probs, dim=-1)
|
| 89 |
+
tokens_space = tokenizer.decode(ids[1:-1], skip_special_tokens=False)
|
| 90 |
+
text_new = tokens_space.replace(" ", "")
|
| 91 |
+
target = text_new[:len(source)]
|
| 92 |
+
errors = get_errors(source, target)
|
| 93 |
+
print(source, " => ", target, errors)
|
| 94 |
+
result.append([target, errors])
|
| 95 |
+
# print(result)
|
| 96 |
+
return target + " " + str(errors)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
if __name__ == '__main__':
|
| 100 |
+
print(macro_correct('少先队员因该为老人让坐'))
|
| 101 |
+
|
| 102 |
+
text_sample = '机七学习是人工智能领遇最能体现智能的一个分知'
|
| 103 |
+
|
| 104 |
+
gr.Interface(
|
| 105 |
+
macro_correct,
|
| 106 |
+
inputs='text',
|
| 107 |
+
outputs='text',
|
| 108 |
+
title="Chinese Spelling Correction Model Macropodus/macbert4csc_v2",
|
| 109 |
+
description="Copy or input error Chinese text. Submit and the machine will correct text.",
|
| 110 |
+
article="Link to <a href='https://github.com/yongzhuo/macro-correct' style='color:blue;' target='_blank\'>Github REPO: macro-correct</a>",
|
| 111 |
+
examples=text_sample
|
| 112 |
+
).launch()
|
| 113 |
+
# ).launch(server_name="0.0.0.0", server_port=8066, share=False, debug=True)
|
| 114 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
transformers
|
| 3 |
+
torch
|