Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- app/__pycache__/draw_diagram.cpython-312.pyc +0 -0
- app/__pycache__/pages.cpython-312.pyc +0 -0
- app/draw_diagram.py +77 -601
- app/pages.py +71 -35
app/__pycache__/draw_diagram.cpython-312.pyc
CHANGED
|
Binary files a/app/__pycache__/draw_diagram.cpython-312.pyc and b/app/__pycache__/draw_diagram.cpython-312.pyc differ
|
|
|
app/__pycache__/pages.cpython-312.pyc
CHANGED
|
Binary files a/app/__pycache__/pages.cpython-312.pyc and b/app/__pycache__/pages.cpython-312.pyc differ
|
|
|
app/draw_diagram.py
CHANGED
|
@@ -2,77 +2,15 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
from streamlit_echarts import st_echarts
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
# from PIL import Image
|
| 8 |
-
|
| 9 |
-
# links_dic = {"random": "https://seaeval.github.io/",
|
| 10 |
-
# "meta_llama_3_8b": "https://huggingface.co/meta-llama/Meta-Llama-3-8B",
|
| 11 |
-
# "mistral_7b_instruct_v0_2": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
|
| 12 |
-
# "sailor_0_5b": "https://huggingface.co/sail/Sailor-0.5B",
|
| 13 |
-
# "sailor_1_8b": "https://huggingface.co/sail/Sailor-1.8B",
|
| 14 |
-
# "sailor_4b": "https://huggingface.co/sail/Sailor-4B",
|
| 15 |
-
# "sailor_7b": "https://huggingface.co/sail/Sailor-7B",
|
| 16 |
-
# "sailor_0_5b_chat": "https://huggingface.co/sail/Sailor-0.5B-Chat",
|
| 17 |
-
# "sailor_1_8b_chat": "https://huggingface.co/sail/Sailor-1.8B-Chat",
|
| 18 |
-
# "sailor_4b_chat": "https://huggingface.co/sail/Sailor-4B-Chat",
|
| 19 |
-
# "sailor_7b_chat": "https://huggingface.co/sail/Sailor-7B-Chat",
|
| 20 |
-
# "sea_mistral_highest_acc_inst_7b": "https://seaeval.github.io/",
|
| 21 |
-
# "meta_llama_3_8b_instruct": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct",
|
| 22 |
-
# "flan_t5_base": "https://huggingface.co/google/flan-t5-base",
|
| 23 |
-
# "flan_t5_large": "https://huggingface.co/google/flan-t5-large",
|
| 24 |
-
# "flan_t5_xl": "https://huggingface.co/google/flan-t5-xl",
|
| 25 |
-
# "flan_t5_xxl": "https://huggingface.co/google/flan-t5-xxl",
|
| 26 |
-
# "flan_ul2": "https://huggingface.co/google/flan-t5-ul2",
|
| 27 |
-
# "flan_t5_small": "https://huggingface.co/google/flan-t5-small",
|
| 28 |
-
# "mt0_xxl": "https://huggingface.co/bigscience/mt0-xxl",
|
| 29 |
-
# "seallm_7b_v2": "https://huggingface.co/SeaLLMs/SeaLLM-7B-v2",
|
| 30 |
-
# "gpt_35_turbo_1106": "https://openai.com/blog/chatgpt",
|
| 31 |
-
# "meta_llama_3_70b": "https://huggingface.co/meta-llama/Meta-Llama-3-70B",
|
| 32 |
-
# "meta_llama_3_70b_instruct": "https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct",
|
| 33 |
-
# "sea_lion_3b": "https://huggingface.co/aisingapore/sea-lion-3b",
|
| 34 |
-
# "sea_lion_7b": "https://huggingface.co/aisingapore/sea-lion-7b",
|
| 35 |
-
# "qwen1_5_110b": "https://huggingface.co/Qwen/Qwen1.5-110B",
|
| 36 |
-
# "qwen1_5_110b_chat": "https://huggingface.co/Qwen/Qwen1.5-110B-Chat",
|
| 37 |
-
# "llama_2_7b_chat": "https://huggingface.co/meta-llama/Llama-2-7b-chat-hf",
|
| 38 |
-
# "gpt4_1106_preview": "https://openai.com/blog/chatgpt",
|
| 39 |
-
# "gemma_2b": "https://huggingface.co/google/gemma-2b",
|
| 40 |
-
# "gemma_7b": "https://huggingface.co/google/gemma-7b",
|
| 41 |
-
# "gemma_2b_it": "https://huggingface.co/google/gemma-2b-it",
|
| 42 |
-
# "gemma_7b_it": "https://huggingface.co/google/gemma-7b-it",
|
| 43 |
-
# "qwen_1_5_7b": "https://huggingface.co/Qwen/Qwen1.5-7B",
|
| 44 |
-
# "qwen_1_5_7b_chat": "https://huggingface.co/Qwen/Qwen1.5-7B-Chat",
|
| 45 |
-
# "sea_lion_7b_instruct": "https://huggingface.co/aisingapore/sea-lion-7b-instruct",
|
| 46 |
-
# "sea_lion_7b_instruct_research": "https://huggingface.co/aisingapore/sea-lion-7b-instruct-research",
|
| 47 |
-
# "LLaMA_3_Merlion_8B": "https://seaeval.github.io/",
|
| 48 |
-
# "LLaMA_3_Merlion_8B_v1_1": "https://seaeval.github.io/"}
|
| 49 |
-
|
| 50 |
-
# links_dic = {k.lower().replace('_', '-') : v for k, v in links_dic.items()}
|
| 51 |
-
|
| 52 |
-
# # huggingface_image = Image.open('style/huggingface.jpg')
|
| 53 |
-
|
| 54 |
-
# def nav_to(value):
|
| 55 |
-
# try:
|
| 56 |
-
# url = links_dic[str(value).lower()]
|
| 57 |
-
# js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
|
| 58 |
-
# st_javascript(js)
|
| 59 |
-
# except:
|
| 60 |
-
# pass
|
| 61 |
-
|
| 62 |
-
# # nav_script = """
|
| 63 |
-
# # <meta http-equiv="refresh" content="0; url='%s'">
|
| 64 |
-
# # """ % (url)
|
| 65 |
-
# # st.write(nav_script, unsafe_allow_html=True)
|
| 66 |
-
|
| 67 |
-
# def highlight_table_line(model_name):
|
| 68 |
-
|
| 69 |
-
# st.write(model_name)
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
|
|
|
| 76 |
data_path = f'{folder}/{category_one}/{category_two}.csv'
|
| 77 |
chart_data = pd.read_csv(data_path).dropna(axis='columns').round(3)
|
| 78 |
st.markdown("""
|
|
@@ -86,386 +24,55 @@ def draw_cross_lingual(category_one, category_two, sort, sorted):
|
|
| 86 |
}
|
| 87 |
</style>
|
| 88 |
""", unsafe_allow_html=True)
|
| 89 |
-
models = st.multiselect("Please choose the models", chart_data['Model'].tolist(), default = chart_data['Model'].tolist())
|
| 90 |
-
chart_data = chart_data[chart_data['Model'].isin(models)]
|
| 91 |
-
|
| 92 |
-
if sorted == 'Ascending':
|
| 93 |
-
ascend = True
|
| 94 |
-
else:
|
| 95 |
-
ascend = False
|
| 96 |
-
|
| 97 |
-
chart_data = chart_data.sort_values(by=[sort], ascending=ascend)
|
| 98 |
-
|
| 99 |
-
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
|
| 100 |
-
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
if category_two in ['cross_mmlu', 'cross_logiqa']:
|
| 105 |
-
# print(category_two)
|
| 106 |
-
|
| 107 |
-
if category_two == 'cross_mmlu':
|
| 108 |
-
subtitle = 'Cross-MMLU'
|
| 109 |
-
|
| 110 |
-
elif category_two == 'cross_logiqa':
|
| 111 |
-
subtitle = 'Cross-LogiQA'
|
| 112 |
-
|
| 113 |
-
options = {
|
| 114 |
-
"title": {"text": f"{subtitle}"},
|
| 115 |
-
"tooltip": {
|
| 116 |
-
"trigger": "axis",
|
| 117 |
-
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 118 |
-
"triggerOn": 'mousemove',
|
| 119 |
-
},
|
| 120 |
-
"legend": {"data": ['Overall Accuracy','Cross-Lingual Consistency', 'AC3',
|
| 121 |
-
'English', 'Chinese', 'Spanish', 'Vietnamese', 'Indonesian', 'Malay', 'Filipino']},
|
| 122 |
-
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 123 |
-
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 124 |
-
"xAxis": [
|
| 125 |
-
{
|
| 126 |
-
"type": "category",
|
| 127 |
-
"boundaryGap": True,
|
| 128 |
-
"triggerEvent": True,
|
| 129 |
-
"data": chart_data['Model'].tolist(),
|
| 130 |
-
}
|
| 131 |
-
],
|
| 132 |
-
"yAxis": [{"type": "value",
|
| 133 |
-
"min": min_value,
|
| 134 |
-
"max": max_value,
|
| 135 |
-
"boundaryGap": True
|
| 136 |
-
# "splitNumber": 10
|
| 137 |
-
}],
|
| 138 |
-
"series": [
|
| 139 |
-
{
|
| 140 |
-
"name": "Overall Accuracy",
|
| 141 |
-
"type": "bar", # "line"
|
| 142 |
-
"data": chart_data['Accuracy'].tolist(),
|
| 143 |
-
},
|
| 144 |
-
{
|
| 145 |
-
"name": "Cross-Lingual Consistency",
|
| 146 |
-
"type": "bar",
|
| 147 |
-
"data": chart_data["Cross-Lingual Consistency"].tolist(),
|
| 148 |
-
},
|
| 149 |
-
{
|
| 150 |
-
"name": "AC3",
|
| 151 |
-
"type": "bar",
|
| 152 |
-
"data": chart_data["AC3"].tolist(),
|
| 153 |
-
},
|
| 154 |
-
{
|
| 155 |
-
"name": "English",
|
| 156 |
-
"type": "bar",
|
| 157 |
-
"data": chart_data["English"].tolist(),
|
| 158 |
-
},
|
| 159 |
-
{
|
| 160 |
-
"name": "Chinese",
|
| 161 |
-
"type": "bar",
|
| 162 |
-
"data": chart_data["Chinese"].tolist(),
|
| 163 |
-
},
|
| 164 |
-
{
|
| 165 |
-
"name": "Spanish",
|
| 166 |
-
"type": "bar",
|
| 167 |
-
"data": chart_data["Spanish"].tolist(),
|
| 168 |
-
},
|
| 169 |
-
{
|
| 170 |
-
"name": "Vietnamese",
|
| 171 |
-
"type": "bar",
|
| 172 |
-
"data": chart_data["Vietnamese"].tolist(),
|
| 173 |
-
},
|
| 174 |
-
{
|
| 175 |
-
"name": "Indonesian",
|
| 176 |
-
"type": "bar",
|
| 177 |
-
"data": chart_data["Indonesian"].tolist(),
|
| 178 |
-
},
|
| 179 |
-
{
|
| 180 |
-
"name": "Malay",
|
| 181 |
-
"type": "bar",
|
| 182 |
-
"data": chart_data["Malay"].tolist(),
|
| 183 |
-
},
|
| 184 |
-
{
|
| 185 |
-
"name": "Filipino",
|
| 186 |
-
"type": "bar",
|
| 187 |
-
"data": chart_data["Filipino"].tolist(),
|
| 188 |
-
},
|
| 189 |
-
],
|
| 190 |
-
}
|
| 191 |
-
|
| 192 |
-
# events = {
|
| 193 |
-
# "click": "function(params) { return params.value }",
|
| 194 |
-
# # "dblclick": "function(params) { return params.value }"
|
| 195 |
-
# }
|
| 196 |
-
|
| 197 |
-
value = st_echarts(options=options, height="500px") #events=events,
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
# if value != None:
|
| 201 |
-
# # print(value)
|
| 202 |
-
# nav_to(value)
|
| 203 |
-
|
| 204 |
-
# if value != None:
|
| 205 |
-
# highlight_table_line(value)
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
elif category_two == 'cross_xquad':
|
| 209 |
-
|
| 210 |
-
subtitle = 'Cross-XQUAD'
|
| 211 |
-
|
| 212 |
-
options = {
|
| 213 |
-
"title": {"text": f"{subtitle}"},
|
| 214 |
-
"tooltip": {
|
| 215 |
-
"trigger": "axis",
|
| 216 |
-
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 217 |
-
"triggerOn": 'mousemove',
|
| 218 |
-
},
|
| 219 |
-
"legend": {"data": ['Overall Accuracy','Cross-Lingual Consistency', 'AC3',
|
| 220 |
-
'English', 'Chinese', 'Spanish', 'Vietnamese', 'Indonesian', 'Malay', 'Filipino']},
|
| 221 |
-
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 222 |
-
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 223 |
-
"xAxis": [
|
| 224 |
-
{
|
| 225 |
-
"type": "category",
|
| 226 |
-
"boundaryGap": True,
|
| 227 |
-
"data": chart_data['Model'].tolist(),
|
| 228 |
-
}
|
| 229 |
-
],
|
| 230 |
-
"yAxis": [{"type": "value",
|
| 231 |
-
"min": min_value,
|
| 232 |
-
"max": max_value,
|
| 233 |
-
"boundaryGap": True
|
| 234 |
-
# "splitNumber": 10
|
| 235 |
-
}],
|
| 236 |
-
"series": [
|
| 237 |
-
{
|
| 238 |
-
"name": "Overall Accuracy",
|
| 239 |
-
"type": "bar",
|
| 240 |
-
"data": chart_data['Accuracy'].tolist(),
|
| 241 |
-
},
|
| 242 |
-
{
|
| 243 |
-
"name": "Cross-Lingual Consistency",
|
| 244 |
-
"type": "bar",
|
| 245 |
-
"data": chart_data["Cross-Lingual Consistency"].tolist(),
|
| 246 |
-
},
|
| 247 |
-
{
|
| 248 |
-
"name": "AC3",
|
| 249 |
-
"type": "bar",
|
| 250 |
-
"data": chart_data["AC3"].tolist(),
|
| 251 |
-
},
|
| 252 |
-
{
|
| 253 |
-
"name": "English",
|
| 254 |
-
"type": "bar",
|
| 255 |
-
"data": chart_data["English"].tolist(),
|
| 256 |
-
},
|
| 257 |
-
{
|
| 258 |
-
"name": "Chinese",
|
| 259 |
-
"type": "bar",
|
| 260 |
-
"data": chart_data["Chinese"].tolist(),
|
| 261 |
-
},
|
| 262 |
-
{
|
| 263 |
-
"name": "Spanish",
|
| 264 |
-
"type": "bar",
|
| 265 |
-
"data": chart_data["Spanish"].tolist(),
|
| 266 |
-
},
|
| 267 |
-
{
|
| 268 |
-
"name": "Vietnamese",
|
| 269 |
-
"type": "bar",
|
| 270 |
-
"data": chart_data["Vietnamese"].tolist(),
|
| 271 |
-
},
|
| 272 |
-
],
|
| 273 |
-
}
|
| 274 |
-
|
| 275 |
-
# events = {
|
| 276 |
-
# "click": "function(params) { return params.value }"
|
| 277 |
-
# }
|
| 278 |
-
|
| 279 |
-
value = st_echarts(options=options, height="500px")
|
| 280 |
-
|
| 281 |
-
# if value != None:
|
| 282 |
-
# # print(value)
|
| 283 |
-
# nav_to(value)
|
| 284 |
-
|
| 285 |
-
# if value != None:
|
| 286 |
-
# highlight_table_line(value)
|
| 287 |
-
|
| 288 |
-
### create table
|
| 289 |
-
st.divider()
|
| 290 |
-
# chart_data['Link'] = chart_data['Model'].map(links_dic)
|
| 291 |
-
st.dataframe(chart_data,
|
| 292 |
-
# column_config = {
|
| 293 |
-
# "Link": st.column_config.LinkColumn(
|
| 294 |
-
# display_text= st.image(huggingface_image)
|
| 295 |
-
# ),
|
| 296 |
-
# },
|
| 297 |
-
hide_index = True,
|
| 298 |
-
use_container_width=True)
|
| 299 |
-
|
| 300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
folder = f"./results/{folder_name}/"
|
| 306 |
-
category_two_dict = {}
|
| 307 |
-
|
| 308 |
-
if folder_name == 'cultural_reasoning':
|
| 309 |
-
category_two_dict = {'SG EVAL': 'sg_eval',
|
| 310 |
-
'SG EVAL V1 Cleaned': 'sg_eval_v1_cleaned',
|
| 311 |
-
'SG EVAL V2 MCQ': 'sg_eval_v2_mcq',
|
| 312 |
-
'SG EVAL V2 Open Ended': 'sg_eval_v2_open',
|
| 313 |
-
'US EVAL': 'us_eval',
|
| 314 |
-
'CN EVAL': 'cn_eval',
|
| 315 |
-
'PH EVAL': 'ph_eval'}
|
| 316 |
-
elif folder_name == 'general_reasoning':
|
| 317 |
-
category_two_dict = {'MMLU': 'mmlu',
|
| 318 |
-
'C Eval': 'c_eval',
|
| 319 |
-
'CMMLU': 'cmmlu',
|
| 320 |
-
'ZBench': 'zbench',
|
| 321 |
-
'IndoMMLU': 'indommlu'}
|
| 322 |
-
|
| 323 |
-
elif folder_name == 'emotion':
|
| 324 |
-
category_two_dict = {'Indonesian Emotion Classification': 'ind_emotion',
|
| 325 |
-
'SST2': 'sst2'}
|
| 326 |
-
|
| 327 |
-
elif folder_name == 'fundamental_nlp_tasks':
|
| 328 |
-
category_two_dict = {'OCNLI': 'ocnli',
|
| 329 |
-
'C3': 'c3',
|
| 330 |
-
'COLA': 'cola',
|
| 331 |
-
'QQP': 'qqp',
|
| 332 |
-
'MNLI': 'mnli',
|
| 333 |
-
'QNLI': 'qnli',
|
| 334 |
-
'WNLI': 'wnli',
|
| 335 |
-
'RTE': 'rte',
|
| 336 |
-
'MRPC': 'mrpc'}
|
| 337 |
|
| 338 |
-
|
| 339 |
-
data_path = f'{folder}/{category_one}/{subtitle}.csv'
|
| 340 |
-
chart_data = pd.read_csv(data_path).round(3)
|
| 341 |
|
| 342 |
-
|
| 343 |
-
<style>
|
| 344 |
-
.stMultiSelect [data-baseweb=select] span {
|
| 345 |
-
max-width: 800px;
|
| 346 |
-
font-size: 0.9rem;
|
| 347 |
-
background-color: #3C6478 !important; /* Background color for selected items */
|
| 348 |
-
color: white; /* Change text color */
|
| 349 |
-
back
|
| 350 |
-
}
|
| 351 |
-
</style>
|
| 352 |
-
""", unsafe_allow_html=True)
|
| 353 |
-
models = st.multiselect("Please choose the models", chart_data['Model'].tolist(), default = chart_data['Model'].tolist())
|
| 354 |
-
chart_data = chart_data[chart_data['Model'].isin(models)]
|
| 355 |
-
|
| 356 |
-
if sorted == 'Ascending':
|
| 357 |
ascend = True
|
| 358 |
else:
|
| 359 |
ascend = False
|
| 360 |
|
| 361 |
-
chart_data = chart_data.sort_values(by=[
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
"triggerEvent": True,
|
| 381 |
-
"data": chart_data['Model'].tolist(),
|
| 382 |
-
}
|
| 383 |
-
],
|
| 384 |
-
"yAxis": [{"type": "value",
|
| 385 |
-
"min": min_value,
|
| 386 |
-
"max": max_value,
|
| 387 |
-
"boundaryGap": True
|
| 388 |
-
# "splitNumber": 10
|
| 389 |
-
}],
|
| 390 |
-
"series": [
|
| 391 |
-
{
|
| 392 |
-
"name": "Overall Accuracy",
|
| 393 |
-
"type": "bar",
|
| 394 |
-
"data": chart_data['Accuracy'].tolist(),
|
| 395 |
-
},
|
| 396 |
-
|
| 397 |
-
],
|
| 398 |
}
|
| 399 |
-
|
| 400 |
-
# events = {
|
| 401 |
-
# "click": "function(params) { return params.value }"
|
| 402 |
-
# }
|
| 403 |
-
|
| 404 |
-
value = st_echarts(options=options, height="500px")
|
| 405 |
-
|
| 406 |
-
# if value != None:
|
| 407 |
-
# # print(value)
|
| 408 |
-
# nav_to(value)
|
| 409 |
-
|
| 410 |
-
# if value != None:
|
| 411 |
-
# highlight_table_line(value)
|
| 412 |
-
|
| 413 |
-
### create table
|
| 414 |
-
st.divider()
|
| 415 |
-
# chart_data['Link'] = chart_data['Model'].map(links_dic)
|
| 416 |
-
st.dataframe(chart_data,
|
| 417 |
-
# column_config = {
|
| 418 |
-
# "Link": st.column_config.LinkColumn(
|
| 419 |
-
# display_text= st.image(huggingface_image)
|
| 420 |
-
# ),
|
| 421 |
-
# },
|
| 422 |
-
hide_index = True,
|
| 423 |
-
use_container_width=True)
|
| 424 |
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
category_two_dict = {'Indonesian to English': 'ind2eng',
|
| 428 |
-
'Vitenamese to English': 'vie2eng',
|
| 429 |
-
'Chinese to English': 'zho2eng',
|
| 430 |
-
'Malay to English': 'zsm2eng'}
|
| 431 |
-
|
| 432 |
-
subtitle = category_two_dict[category_two]
|
| 433 |
-
|
| 434 |
-
data_path = f'{folder}/{category_one}/{subtitle}.csv'
|
| 435 |
-
chart_data = pd.read_csv(data_path).round(3)
|
| 436 |
-
st.markdown("""
|
| 437 |
-
<style>
|
| 438 |
-
.stMultiSelect [data-baseweb=select] span {
|
| 439 |
-
max-width: 800px;
|
| 440 |
-
font-size: 0.9rem;
|
| 441 |
-
background-color: #3C6478 !important; /* Background color for selected items */
|
| 442 |
-
color: white; /* Change text color */
|
| 443 |
-
back
|
| 444 |
-
}
|
| 445 |
-
|
| 446 |
-
</style>
|
| 447 |
-
""", unsafe_allow_html=True)
|
| 448 |
-
models = st.multiselect("Please choose the models", chart_data['Model'].tolist(), default = chart_data['Model'].tolist())
|
| 449 |
-
chart_data = chart_data[chart_data['Model'].isin(models)]
|
| 450 |
-
|
| 451 |
-
if sorted == 'Ascending':
|
| 452 |
-
ascend = True
|
| 453 |
-
else:
|
| 454 |
-
ascend = False
|
| 455 |
-
|
| 456 |
-
chart_data = chart_data.sort_values(by=['BLEU'], ascending=ascend)
|
| 457 |
|
| 458 |
-
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
|
| 459 |
-
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
|
| 460 |
-
|
| 461 |
options = {
|
| 462 |
-
"title": {"text": f"{category_two}"},
|
| 463 |
"tooltip": {
|
| 464 |
"trigger": "axis",
|
| 465 |
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 466 |
"triggerOn": 'mousemove',
|
| 467 |
},
|
| 468 |
-
"legend": {"data":
|
| 469 |
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 470 |
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 471 |
"xAxis": [
|
|
@@ -473,7 +80,7 @@ def draw_flores_translation(category_one, category_two, sorted):
|
|
| 473 |
"type": "category",
|
| 474 |
"boundaryGap": True,
|
| 475 |
"triggerEvent": True,
|
| 476 |
-
"data":
|
| 477 |
}
|
| 478 |
],
|
| 479 |
"yAxis": [{"type": "value",
|
|
@@ -482,181 +89,50 @@ def draw_flores_translation(category_one, category_two, sorted):
|
|
| 482 |
"boundaryGap": True
|
| 483 |
# "splitNumber": 10
|
| 484 |
}],
|
| 485 |
-
"series": [
|
| 486 |
-
|
| 487 |
-
"name": "BLEU",
|
| 488 |
"type": "bar",
|
| 489 |
-
"data": chart_data['
|
| 490 |
-
},
|
| 491 |
-
|
| 492 |
-
],
|
| 493 |
}
|
| 494 |
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
value = st_echarts(options=options, height="500px")
|
| 500 |
-
|
| 501 |
-
# if value != None:
|
| 502 |
-
# # print(value)
|
| 503 |
-
# nav_to(value)
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
### create table
|
| 507 |
-
st.divider()
|
| 508 |
-
# chart_data['Link'] = chart_data['Model'].map(links_dic)
|
| 509 |
-
st.dataframe(chart_data,
|
| 510 |
-
# column_config = {
|
| 511 |
-
# "Link": st.column_config.LinkColumn(
|
| 512 |
-
# display_text= st.image(huggingface_image)
|
| 513 |
-
# ),
|
| 514 |
-
# },
|
| 515 |
-
hide_index = True,
|
| 516 |
-
use_container_width=True)
|
| 517 |
-
|
| 518 |
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 529 |
|
| 530 |
-
|
| 531 |
-
<style>
|
| 532 |
-
.stMultiSelect [data-baseweb=select] span {
|
| 533 |
-
max-width: 800px;
|
| 534 |
-
font-size: 0.9rem;
|
| 535 |
-
background-color: #3C6478 !important; /* Background color for selected items */
|
| 536 |
-
color: white; /* Change text color */
|
| 537 |
-
back
|
| 538 |
-
}
|
| 539 |
-
</style>
|
| 540 |
-
""", unsafe_allow_html=True)
|
| 541 |
-
models = st.multiselect("Please choose the models", chart_data['Model'].tolist(), default = chart_data['Model'].tolist())
|
| 542 |
-
chart_data = chart_data[chart_data['Model'].isin(models)]
|
| 543 |
-
|
| 544 |
-
if sorted == 'Ascending':
|
| 545 |
-
ascend = True
|
| 546 |
-
else:
|
| 547 |
-
ascend = False
|
| 548 |
-
|
| 549 |
-
chart_data = chart_data.sort_values(by=[sort], ascending=ascend)
|
| 550 |
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
|
| 555 |
-
|
| 556 |
-
if category_two in ['SAMSum', 'DialogSum']:
|
| 557 |
-
options = {
|
| 558 |
-
"title": {"text": f"{category_two}"},
|
| 559 |
-
"tooltip": {
|
| 560 |
-
"trigger": "axis",
|
| 561 |
-
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 562 |
-
"triggerOn": 'mousemove',
|
| 563 |
-
},
|
| 564 |
-
"legend": {"data": list(chart_data.columns)},
|
| 565 |
-
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 566 |
-
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 567 |
-
"xAxis": [
|
| 568 |
-
{
|
| 569 |
-
"type": "category",
|
| 570 |
-
"boundaryGap": True,
|
| 571 |
-
"triggerEvent": True,
|
| 572 |
-
"data": chart_data['Model'].tolist(),
|
| 573 |
-
}
|
| 574 |
-
],
|
| 575 |
-
"yAxis": [{"type": "value",
|
| 576 |
-
"min": min_value,
|
| 577 |
-
"max": max_value,
|
| 578 |
-
"boundaryGap": True
|
| 579 |
-
# "splitNumber": 10
|
| 580 |
-
}],
|
| 581 |
-
"series": [
|
| 582 |
-
{
|
| 583 |
-
"name": "Average",
|
| 584 |
-
"type": "bar",
|
| 585 |
-
"data": chart_data['Average'].tolist(),
|
| 586 |
-
},
|
| 587 |
-
{
|
| 588 |
-
"name": "ROUGE-1",
|
| 589 |
-
"type": "bar",
|
| 590 |
-
"data": chart_data["ROUGE-1"].tolist(),
|
| 591 |
-
},
|
| 592 |
-
{
|
| 593 |
-
"name": "ROUGE-2",
|
| 594 |
-
"type": "bar",
|
| 595 |
-
"data": chart_data["ROUGE-2"].tolist(),
|
| 596 |
-
},
|
| 597 |
-
{
|
| 598 |
-
"name": "ROUGE-L",
|
| 599 |
-
"type": "bar",
|
| 600 |
-
"data": chart_data["ROUGE-L"].tolist(),
|
| 601 |
-
},
|
| 602 |
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 612 |
-
"triggerOn": 'mousemove',
|
| 613 |
-
},
|
| 614 |
-
"legend": {"data": list(chart_data.columns)},
|
| 615 |
-
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 616 |
-
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 617 |
-
"xAxis": [
|
| 618 |
-
{
|
| 619 |
-
"type": "category",
|
| 620 |
-
"boundaryGap": True,
|
| 621 |
-
"triggerEvent": True,
|
| 622 |
-
"data": chart_data['Model'].tolist(),
|
| 623 |
-
}
|
| 624 |
-
],
|
| 625 |
-
"yAxis": [{"type": "value",
|
| 626 |
-
"min": min_value,
|
| 627 |
-
"max": max_value,
|
| 628 |
-
# "splitNumber": 10
|
| 629 |
-
"boundaryGap": True
|
| 630 |
-
}],
|
| 631 |
-
"series": [
|
| 632 |
-
{
|
| 633 |
-
"name": "Accuracy",
|
| 634 |
-
"type": "bar",
|
| 635 |
-
"data": chart_data['Accuracy'].tolist(),
|
| 636 |
},
|
|
|
|
|
|
|
|
|
|
| 637 |
|
| 638 |
-
],
|
| 639 |
-
}
|
| 640 |
-
|
| 641 |
-
# events = {
|
| 642 |
-
# "click": "function(params) { return params.value }"
|
| 643 |
-
# }
|
| 644 |
-
|
| 645 |
-
value = st_echarts(options=options, height="500px")
|
| 646 |
-
|
| 647 |
-
# if value != None:
|
| 648 |
-
# # print(value)
|
| 649 |
-
# nav_to(value)
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
### create table
|
| 653 |
-
st.divider()
|
| 654 |
-
# chart_data['Link'] = chart_data['Model'].map(links_dic)
|
| 655 |
-
st.dataframe(chart_data,
|
| 656 |
-
# column_config = {
|
| 657 |
-
# "Link": st.column_config.LinkColumn(
|
| 658 |
-
# display_text= st.image(huggingface_image)
|
| 659 |
-
# ),
|
| 660 |
-
# },
|
| 661 |
-
hide_index = True,
|
| 662 |
-
use_container_width=True)
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
from streamlit_echarts import st_echarts
|
| 5 |
+
from streamlit.components.v1 import html
|
| 6 |
+
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
path = "./style/Leaderboard-Rename-SeaEval.csv"
|
| 9 |
+
info_df = pd.read_csv(path).dropna(axis=0)
|
| 10 |
|
| 11 |
+
def draw(folder_name, category_one, category_two, sort, num_sort):
|
| 12 |
+
|
| 13 |
+
folder = f"./results/{folder_name}/"
|
| 14 |
data_path = f'{folder}/{category_one}/{category_two}.csv'
|
| 15 |
chart_data = pd.read_csv(data_path).dropna(axis='columns').round(3)
|
| 16 |
st.markdown("""
|
|
|
|
| 24 |
}
|
| 25 |
</style>
|
| 26 |
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# remap model names
|
| 29 |
+
display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['Original Name'], info_df['Proper Display Name'])}
|
| 30 |
+
chart_data['model_show'] = chart_data['Model'].map(display_model_names)
|
| 31 |
+
chart_data['model_show'] = chart_data['model_show'].fillna(chart_data['Model'].apply(lambda x: x.replace('_', '-')))
|
| 32 |
|
| 33 |
+
st.session_state.models = st.multiselect("Please choose the model",
|
| 34 |
+
sorted(chart_data['model_show'].tolist()),
|
| 35 |
+
default = sorted(chart_data['model_show'].tolist()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
chart_data = chart_data[chart_data['model_show'].isin(st.session_state.models)]
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
if num_sort == 'Ascending':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
ascend = True
|
| 41 |
else:
|
| 42 |
ascend = False
|
| 43 |
|
| 44 |
+
chart_data = chart_data.sort_values(by=[sort], ascending=ascend).dropna(axis=0)
|
| 45 |
+
|
| 46 |
+
if len(chart_data) == 0:
|
| 47 |
+
return
|
| 48 |
+
|
| 49 |
+
min_value = round(min(chart_data.iloc[:, 1]) - 0.1*min(chart_data.iloc[:, 1]), 1)
|
| 50 |
+
max_value = round(max(chart_data.iloc[:, 1]) + 0.1*max(chart_data.iloc[:, 1]), 1)
|
| 51 |
+
|
| 52 |
+
display_names = {
|
| 53 |
+
'cross_mmlu': 'Cross-MMLU',
|
| 54 |
+
'cross_logiqa': 'Cross-LogiQA',
|
| 55 |
+
'cross_xquad': 'Cross-XQUAD',
|
| 56 |
+
'sg_eval': 'SG EVAL',
|
| 57 |
+
'sg_eval_v1_cleaned': 'SG EVAL V1 Cleaned',
|
| 58 |
+
'sg_eval_v2_mcq': 'SG EVAL V2 MCQ',
|
| 59 |
+
'sg_eval_v2_open': 'SG EVAL V2 Open Ended',
|
| 60 |
+
'us_eval': 'US EVAL',
|
| 61 |
+
'cn_eval': 'CN EVAL',
|
| 62 |
+
'ph_eval': 'PH EVAL'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
# breakpoint()
|
| 66 |
+
data_columns = [i for i in chart_data.columns if i not in ['Model', 'model_show']]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
|
|
|
|
|
|
|
|
|
| 68 |
options = {
|
| 69 |
+
# "title": {"text": f"{display_names[category_two]}"},
|
| 70 |
"tooltip": {
|
| 71 |
"trigger": "axis",
|
| 72 |
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 73 |
"triggerOn": 'mousemove',
|
| 74 |
},
|
| 75 |
+
"legend": {"data": data_columns},
|
| 76 |
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 77 |
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 78 |
"xAxis": [
|
|
|
|
| 80 |
"type": "category",
|
| 81 |
"boundaryGap": True,
|
| 82 |
"triggerEvent": True,
|
| 83 |
+
"data": chart_data['model_show'].tolist(),
|
| 84 |
}
|
| 85 |
],
|
| 86 |
"yAxis": [{"type": "value",
|
|
|
|
| 89 |
"boundaryGap": True
|
| 90 |
# "splitNumber": 10
|
| 91 |
}],
|
| 92 |
+
"series": [{
|
| 93 |
+
"name": f"{col}",
|
|
|
|
| 94 |
"type": "bar",
|
| 95 |
+
"data": chart_data[f'{col}'].tolist(),
|
| 96 |
+
} for col in data_columns],
|
|
|
|
|
|
|
| 97 |
}
|
| 98 |
|
| 99 |
+
events = {
|
| 100 |
+
"click": "function(params) { return params.value }"
|
| 101 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
+
value = st_echarts(options=options, events=events, height="500px")
|
| 104 |
+
|
| 105 |
+
'''
|
| 106 |
+
Show table
|
| 107 |
+
'''
|
| 108 |
+
# st.divider()
|
| 109 |
+
with st.container():
|
| 110 |
+
# st.write("")
|
| 111 |
+
st.markdown('##### TABLE')
|
| 112 |
+
# custom_css = """
|
| 113 |
+
|
| 114 |
+
# """
|
| 115 |
+
# st.markdown(custom_css, unsafe_allow_html=True)
|
| 116 |
+
|
| 117 |
+
model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}
|
| 118 |
|
| 119 |
+
chart_data['model_link'] = chart_data['model_show'].map(model_link)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
# import pdb
|
| 122 |
+
# pdb.set_trace()
|
|
|
|
| 123 |
|
| 124 |
+
chart_data_table = chart_data[['model_show', 'model_link'] + data_columns]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
st.dataframe(
|
| 127 |
+
chart_data_table,
|
| 128 |
+
column_config={
|
| 129 |
+
'model_show': 'Model',
|
| 130 |
+
chart_data_table.columns[1]: {'alignment': 'center'},
|
| 131 |
+
"model_link": st.column_config.LinkColumn(
|
| 132 |
+
"Model Link",
|
| 133 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
},
|
| 135 |
+
hide_index=True,
|
| 136 |
+
use_container_width=True
|
| 137 |
+
)
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/pages.py
CHANGED
|
@@ -90,15 +90,15 @@ def cross_lingual_consistency():
|
|
| 90 |
sort = st.selectbox('Sort', ['Accuracy','Cross-Lingual Consistency', 'AC3',
|
| 91 |
'English', 'Chinese', 'Spanish', 'Vietnamese'])
|
| 92 |
with right:
|
| 93 |
-
|
| 94 |
|
| 95 |
-
if category_one or category_two or sort or
|
| 96 |
category_one = category_one_dict[category_one]
|
| 97 |
category_two = category_two_dict[category_two]
|
| 98 |
|
| 99 |
-
|
| 100 |
-
else:
|
| 101 |
-
|
| 102 |
|
| 103 |
def cultural_reasoning():
|
| 104 |
st.title("Cultural Reasoning")
|
|
@@ -116,6 +116,13 @@ def cultural_reasoning():
|
|
| 116 |
|
| 117 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 118 |
'Few Shot': 'few_shot'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 121 |
with left:
|
|
@@ -123,13 +130,14 @@ def cultural_reasoning():
|
|
| 123 |
with center:
|
| 124 |
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 125 |
with right:
|
| 126 |
-
|
| 127 |
|
| 128 |
-
if category_one or category_two or
|
| 129 |
category_one = category_one_dict[category_one]
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
| 133 |
|
| 134 |
|
| 135 |
def general_reasoning():
|
|
@@ -146,6 +154,11 @@ def general_reasoning():
|
|
| 146 |
|
| 147 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 148 |
'Few Shot': 'few_shot'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 151 |
with left:
|
|
@@ -153,13 +166,14 @@ def general_reasoning():
|
|
| 153 |
with center:
|
| 154 |
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 155 |
with right:
|
| 156 |
-
|
| 157 |
|
| 158 |
-
if category_one or category_two or
|
| 159 |
category_one = category_one_dict[category_one]
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
| 163 |
|
| 164 |
def flores():
|
| 165 |
st.title("FLORES-Translation")
|
|
@@ -173,6 +187,10 @@ def flores():
|
|
| 173 |
|
| 174 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 175 |
'Few Shot': 'few_shot'}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
|
| 178 |
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
|
@@ -181,13 +199,14 @@ def flores():
|
|
| 181 |
with center:
|
| 182 |
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 183 |
with right:
|
| 184 |
-
|
| 185 |
|
| 186 |
-
if category_one or category_two or
|
| 187 |
category_one = category_one_dict[category_one]
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
| 191 |
|
| 192 |
def emotion():
|
| 193 |
st.title("Emotion")
|
|
@@ -200,6 +219,8 @@ def emotion():
|
|
| 200 |
|
| 201 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 202 |
'Few Shot': 'few_shot'}
|
|
|
|
|
|
|
| 203 |
|
| 204 |
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 205 |
with left:
|
|
@@ -207,13 +228,14 @@ def emotion():
|
|
| 207 |
with center:
|
| 208 |
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 209 |
with right:
|
| 210 |
-
|
| 211 |
|
| 212 |
-
if category_one or category_two or
|
| 213 |
category_one = category_one_dict[category_one]
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
| 217 |
|
| 218 |
def dialogue():
|
| 219 |
st.title("Dialogue")
|
|
@@ -227,6 +249,9 @@ def dialogue():
|
|
| 227 |
|
| 228 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 229 |
'Few Shot': 'few_shot'}
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 232 |
with left:
|
|
@@ -240,13 +265,14 @@ def dialogue():
|
|
| 240 |
sort = st.selectbox('Sort', ['Average', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L'])
|
| 241 |
|
| 242 |
with right:
|
| 243 |
-
|
| 244 |
|
| 245 |
-
if category_one or category_two or sort or
|
| 246 |
category_one = category_one_dict[category_one]
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
|
|
|
| 250 |
|
| 251 |
def fundamental_nlp_tasks():
|
| 252 |
st.title("Fundamental NLP Tasks")
|
|
@@ -256,6 +282,15 @@ def fundamental_nlp_tasks():
|
|
| 256 |
|
| 257 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 258 |
'Few Shot': 'few_shot'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 261 |
with left:
|
|
@@ -263,10 +298,11 @@ def fundamental_nlp_tasks():
|
|
| 263 |
with center:
|
| 264 |
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 265 |
with right:
|
| 266 |
-
|
| 267 |
|
| 268 |
-
if category_one or category_two or
|
| 269 |
category_one = category_one_dict[category_one]
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
| 90 |
sort = st.selectbox('Sort', ['Accuracy','Cross-Lingual Consistency', 'AC3',
|
| 91 |
'English', 'Chinese', 'Spanish', 'Vietnamese'])
|
| 92 |
with right:
|
| 93 |
+
sortby = st.selectbox('by', ['Ascending', 'Descending'])
|
| 94 |
|
| 95 |
+
if category_one or category_two or sort or sortby:
|
| 96 |
category_one = category_one_dict[category_one]
|
| 97 |
category_two = category_two_dict[category_two]
|
| 98 |
|
| 99 |
+
draw('cross_lingual',category_one, category_two, sort, sortby)
|
| 100 |
+
# else:
|
| 101 |
+
# draw('zero_shot', 'cross_mmlu', 'Accuracy', 'Descending')
|
| 102 |
|
| 103 |
def cultural_reasoning():
|
| 104 |
st.title("Cultural Reasoning")
|
|
|
|
| 116 |
|
| 117 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 118 |
'Few Shot': 'few_shot'}
|
| 119 |
+
category_two_dict = {'SG EVAL': 'sg_eval',
|
| 120 |
+
'SG EVAL V1 Cleaned': 'sg_eval_v1_cleaned',
|
| 121 |
+
'SG EVAL V2 MCQ': 'sg_eval_v2_mcq',
|
| 122 |
+
'SG EVAL V2 Open Ended': 'sg_eval_v2_open',
|
| 123 |
+
'US EVAL': 'us_eval',
|
| 124 |
+
'CN EVAL': 'cn_eval',
|
| 125 |
+
'PH EVAL': 'ph_eval'}
|
| 126 |
|
| 127 |
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 128 |
with left:
|
|
|
|
| 130 |
with center:
|
| 131 |
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 132 |
with right:
|
| 133 |
+
sortby = st.selectbox('sorted by', ['Ascending', 'Descending'])
|
| 134 |
|
| 135 |
+
if category_one or category_two or sortby:
|
| 136 |
category_one = category_one_dict[category_one]
|
| 137 |
+
category_two = category_two_dict[category_two]
|
| 138 |
+
draw('cultural_reasoning', category_one, category_two, 'Accuracy',sortby)
|
| 139 |
+
# else:
|
| 140 |
+
# draw_only_acc('cultural_reasoning', 'zero_shot', 'sg_eval', 'Descending')
|
| 141 |
|
| 142 |
|
| 143 |
def general_reasoning():
|
|
|
|
| 154 |
|
| 155 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 156 |
'Few Shot': 'few_shot'}
|
| 157 |
+
category_two_dict = {'MMLU': 'mmlu',
|
| 158 |
+
'C Eval': 'c_eval',
|
| 159 |
+
'CMMLU': 'cmmlu',
|
| 160 |
+
'ZBench': 'zbench',
|
| 161 |
+
'IndoMMLU': 'indommlu'}
|
| 162 |
|
| 163 |
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 164 |
with left:
|
|
|
|
| 166 |
with center:
|
| 167 |
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 168 |
with right:
|
| 169 |
+
sortby = st.selectbox('sorted by', ['Ascending', 'Descending'])
|
| 170 |
|
| 171 |
+
if category_one or category_two or sortby:
|
| 172 |
category_one = category_one_dict[category_one]
|
| 173 |
+
category_two = category_two_dict[category_two]
|
| 174 |
+
draw('general_reasoning', category_one, category_two, 'Accuracy',sortby)
|
| 175 |
+
# else:
|
| 176 |
+
# draw_only_acc('general_reasoning', 'zero_shot', 'MMLU Full', 'Descending')
|
| 177 |
|
| 178 |
def flores():
|
| 179 |
st.title("FLORES-Translation")
|
|
|
|
| 187 |
|
| 188 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 189 |
'Few Shot': 'few_shot'}
|
| 190 |
+
category_two_dict = {'Indonesian to English': 'ind2eng',
|
| 191 |
+
'Vitenamese to English': 'vie2eng',
|
| 192 |
+
'Chinese to English': 'zho2eng',
|
| 193 |
+
'Malay to English': 'zsm2eng'}
|
| 194 |
|
| 195 |
|
| 196 |
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
|
|
|
| 199 |
with center:
|
| 200 |
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 201 |
with right:
|
| 202 |
+
sortby = st.selectbox('sorted by', ['Ascending', 'Descending'])
|
| 203 |
|
| 204 |
+
if category_one or category_two or sortby:
|
| 205 |
category_one = category_one_dict[category_one]
|
| 206 |
+
category_two = category_two_dict[category_two]
|
| 207 |
+
draw('flores_translation', category_one, category_two, 'BLEU',sortby)
|
| 208 |
+
# else:
|
| 209 |
+
# draw_flores_translation('zero_shot', 'Indonesian to English', 'Descending')
|
| 210 |
|
| 211 |
def emotion():
|
| 212 |
st.title("Emotion")
|
|
|
|
| 219 |
|
| 220 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 221 |
'Few Shot': 'few_shot'}
|
| 222 |
+
category_two_dict = {'Indonesian Emotion Classification': 'ind_emotion',
|
| 223 |
+
'SST2': 'sst2'}
|
| 224 |
|
| 225 |
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 226 |
with left:
|
|
|
|
| 228 |
with center:
|
| 229 |
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 230 |
with right:
|
| 231 |
+
sortby = st.selectbox('sorted by', ['Ascending', 'Descending'])
|
| 232 |
|
| 233 |
+
if category_one or category_two or sortby:
|
| 234 |
category_one = category_one_dict[category_one]
|
| 235 |
+
category_two = category_two_dict[category_two]
|
| 236 |
+
draw('emotion', category_one, category_two, 'Accuracy', sortby)
|
| 237 |
+
# else:
|
| 238 |
+
# draw_only_acc('emotion', 'zero_shot', 'Indonesian Emotion Classification', 'Descending')
|
| 239 |
|
| 240 |
def dialogue():
|
| 241 |
st.title("Dialogue")
|
|
|
|
| 249 |
|
| 250 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 251 |
'Few Shot': 'few_shot'}
|
| 252 |
+
category_two_dict = {'DREAM': 'dream',
|
| 253 |
+
'SAMSum': 'samsum',
|
| 254 |
+
'DialogSum': 'dialogsum'}
|
| 255 |
|
| 256 |
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 257 |
with left:
|
|
|
|
| 265 |
sort = st.selectbox('Sort', ['Average', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L'])
|
| 266 |
|
| 267 |
with right:
|
| 268 |
+
sortby = st.selectbox('by', ['Ascending', 'Descending'])
|
| 269 |
|
| 270 |
+
if category_one or category_two or sort or sortby:
|
| 271 |
category_one = category_one_dict[category_one]
|
| 272 |
+
category_two = category_two_dict[category_two]
|
| 273 |
+
draw('dialogue', category_one, category_two, sort, sortby)
|
| 274 |
+
# else:
|
| 275 |
+
# draw_dialogue('zero_shot', 'DREAM', sort[0],'Descending')
|
| 276 |
|
| 277 |
def fundamental_nlp_tasks():
|
| 278 |
st.title("Fundamental NLP Tasks")
|
|
|
|
| 282 |
|
| 283 |
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 284 |
'Few Shot': 'few_shot'}
|
| 285 |
+
category_two_dict = {'OCNLI': 'ocnli',
|
| 286 |
+
'C3': 'c3',
|
| 287 |
+
'COLA': 'cola',
|
| 288 |
+
'QQP': 'qqp',
|
| 289 |
+
'MNLI': 'mnli',
|
| 290 |
+
'QNLI': 'qnli',
|
| 291 |
+
'WNLI': 'wnli',
|
| 292 |
+
'RTE': 'rte',
|
| 293 |
+
'MRPC': 'mrpc'}
|
| 294 |
|
| 295 |
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 296 |
with left:
|
|
|
|
| 298 |
with center:
|
| 299 |
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 300 |
with right:
|
| 301 |
+
sortby = st.selectbox('sorted by', ['Ascending', 'Descending'])
|
| 302 |
|
| 303 |
+
if category_one or category_two or sortby:
|
| 304 |
category_one = category_one_dict[category_one]
|
| 305 |
+
category_two = category_two_dict[category_two]
|
| 306 |
+
draw('fundamental_nlp_tasks', category_one, category_two, 'Accuracy', sortby)
|
| 307 |
+
# else:
|
| 308 |
+
# draw_only_acc('fundamental_nlp_tasks', 'zero_shot', 'OCNLI', 'Descending')
|