Spaces:
Running
Running
Upload functions
Browse files- app/draw_diagram.py +556 -0
- app/pages.py +191 -0
app/draw_diagram.py
ADDED
|
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from streamlit_echarts import st_echarts
|
| 5 |
+
# from streamlit_echarts import JsCode
|
| 6 |
+
from streamlit_javascript import st_javascript
|
| 7 |
+
# from PIL import Image
|
| 8 |
+
|
| 9 |
+
links_dic = {
|
| 10 |
+
"Meta-Llama-3-8B-Instruct": 'https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct',
|
| 11 |
+
"Meta-Llama-3-70B-Instruct": 'https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct',
|
| 12 |
+
"Meta-Llama-3-8B": "https://huggingface.co/meta-llama/Meta-Llama-3-8B"
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# huggingface_image = Image.open('style/huggingface.jpg')
|
| 17 |
+
|
| 18 |
+
def nav_to(url):
|
| 19 |
+
# print(url)
|
| 20 |
+
js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
|
| 21 |
+
st_javascript(js)
|
| 22 |
+
|
| 23 |
+
# nav_script = """
|
| 24 |
+
# <meta http-equiv="refresh" content="0; url='%s'">
|
| 25 |
+
# """ % (url)
|
| 26 |
+
# st.write(nav_script, unsafe_allow_html=True)
|
| 27 |
+
|
| 28 |
+
def highlight_table_line(model_name):
|
| 29 |
+
|
| 30 |
+
st.write(model_name)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def draw_cross_lingual(category_one, category_two, sort, sorted):
|
| 34 |
+
|
| 35 |
+
folder = "./results/cross_lingual/"
|
| 36 |
+
subtitle = ''
|
| 37 |
+
data_path = f'{folder}/{category_one}/{category_two}.csv'
|
| 38 |
+
chart_data = pd.read_csv(data_path).dropna(axis='columns').round(2)
|
| 39 |
+
|
| 40 |
+
if sorted == 'Ascending':
|
| 41 |
+
ascend = True
|
| 42 |
+
else:
|
| 43 |
+
ascend = False
|
| 44 |
+
|
| 45 |
+
chart_data = chart_data.sort_values(by=[sort], ascending=ascend)
|
| 46 |
+
|
| 47 |
+
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
|
| 48 |
+
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
|
| 49 |
+
|
| 50 |
+
if category_two in ['cross_mmlu', 'cross_logiqa']:
|
| 51 |
+
# print(category_two)
|
| 52 |
+
|
| 53 |
+
if category_two == 'cross_mmlu':
|
| 54 |
+
subtitle = 'Cross-MMLU'
|
| 55 |
+
|
| 56 |
+
elif category_two == 'cross_logiqa':
|
| 57 |
+
subtitle = 'Cross-LogiQA'
|
| 58 |
+
|
| 59 |
+
options = {
|
| 60 |
+
"title": {"text": f"{subtitle}"},
|
| 61 |
+
"tooltip": {
|
| 62 |
+
"trigger": "axis",
|
| 63 |
+
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 64 |
+
"triggerOn": 'mousemove',
|
| 65 |
+
},
|
| 66 |
+
"legend": {"data": ['Overall Accuracy','Cross-Lingual Consistency', 'AC3',
|
| 67 |
+
'English', 'Chinese', 'Spanish', 'Vietnamese', 'Indonesian', 'Malay', 'Filipino']},
|
| 68 |
+
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 69 |
+
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 70 |
+
"xAxis": [
|
| 71 |
+
{
|
| 72 |
+
"type": "category",
|
| 73 |
+
"boundaryGap": False,
|
| 74 |
+
"triggerEvent": True,
|
| 75 |
+
"data": chart_data['Model'].tolist(),
|
| 76 |
+
}
|
| 77 |
+
],
|
| 78 |
+
"yAxis": [{"type": "value",
|
| 79 |
+
"min": min_value,
|
| 80 |
+
"max": max_value,
|
| 81 |
+
# "splitNumber": 10
|
| 82 |
+
}],
|
| 83 |
+
"series": [
|
| 84 |
+
{
|
| 85 |
+
"name": "Overall Accuracy",
|
| 86 |
+
"type": "line",
|
| 87 |
+
"data": chart_data['Accuracy'].tolist(),
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"name": "Cross-Lingual Consistency",
|
| 91 |
+
"type": "line",
|
| 92 |
+
"data": chart_data["Cross-Lingual Consistency"].tolist(),
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"name": "AC3",
|
| 96 |
+
"type": "line",
|
| 97 |
+
"data": chart_data["AC3"].tolist(),
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"name": "English",
|
| 101 |
+
"type": "line",
|
| 102 |
+
"data": chart_data["English"].tolist(),
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"name": "Chinese",
|
| 106 |
+
"type": "line",
|
| 107 |
+
"data": chart_data["Chinese"].tolist(),
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"name": "Spanish",
|
| 111 |
+
"type": "line",
|
| 112 |
+
"data": chart_data["Spanish"].tolist(),
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"name": "Vietnamese",
|
| 116 |
+
"type": "line",
|
| 117 |
+
"data": chart_data["Vietnamese"].tolist(),
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"name": "Indonesian",
|
| 121 |
+
"type": "line",
|
| 122 |
+
"data": chart_data["Indonesian"].tolist(),
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"name": "Malay",
|
| 126 |
+
"type": "line",
|
| 127 |
+
"data": chart_data["Malay"].tolist(),
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"name": "Filipino",
|
| 131 |
+
"type": "line",
|
| 132 |
+
"data": chart_data["Filipino"].tolist(),
|
| 133 |
+
},
|
| 134 |
+
],
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
events = {
|
| 138 |
+
"click": "function(params) { return params.value }",
|
| 139 |
+
# "dblclick": "function(params) { return params.value }"
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
value = st_echarts(options=options, events=events, height="500px")
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
if value != None:
|
| 146 |
+
# print(value)
|
| 147 |
+
nav_to(links_dic[value])
|
| 148 |
+
|
| 149 |
+
# if value != None:
|
| 150 |
+
# highlight_table_line(value)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
elif category_two == 'cross_xquad':
|
| 154 |
+
|
| 155 |
+
subtitle = 'Cross-XQUAD'
|
| 156 |
+
|
| 157 |
+
options = {
|
| 158 |
+
"title": {"text": f"{subtitle}"},
|
| 159 |
+
"tooltip": {
|
| 160 |
+
"trigger": "axis",
|
| 161 |
+
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 162 |
+
"triggerOn": 'mousemove',
|
| 163 |
+
},
|
| 164 |
+
"legend": {"data": ['Overall Accuracy','Cross-Lingual Consistency', 'AC3',
|
| 165 |
+
'English', 'Chinese', 'Spanish', 'Vietnamese', 'Indonesian', 'Malay', 'Filipino']},
|
| 166 |
+
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 167 |
+
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 168 |
+
"xAxis": [
|
| 169 |
+
{
|
| 170 |
+
"type": "category",
|
| 171 |
+
"boundaryGap": False,
|
| 172 |
+
"data": chart_data['Model'].tolist(),
|
| 173 |
+
}
|
| 174 |
+
],
|
| 175 |
+
"yAxis": [{"type": "value",
|
| 176 |
+
"min": min_value,
|
| 177 |
+
"max": max_value,
|
| 178 |
+
# "splitNumber": 10
|
| 179 |
+
}],
|
| 180 |
+
"series": [
|
| 181 |
+
{
|
| 182 |
+
"name": "Overall Accuracy",
|
| 183 |
+
"type": "line",
|
| 184 |
+
"data": chart_data['Accuracy'].tolist(),
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"name": "Cross-Lingual Consistency",
|
| 188 |
+
"type": "line",
|
| 189 |
+
"data": chart_data["Cross-Lingual Consistency"].tolist(),
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"name": "AC3",
|
| 193 |
+
"type": "line",
|
| 194 |
+
"data": chart_data["AC3"].tolist(),
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"name": "English",
|
| 198 |
+
"type": "line",
|
| 199 |
+
"data": chart_data["English"].tolist(),
|
| 200 |
+
},
|
| 201 |
+
{
|
| 202 |
+
"name": "Chinese",
|
| 203 |
+
"type": "line",
|
| 204 |
+
"data": chart_data["Chinese"].tolist(),
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"name": "Spanish",
|
| 208 |
+
"type": "line",
|
| 209 |
+
"data": chart_data["Spanish"].tolist(),
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"name": "Vietnamese",
|
| 213 |
+
"type": "line",
|
| 214 |
+
"data": chart_data["Vietnamese"].tolist(),
|
| 215 |
+
},
|
| 216 |
+
],
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
events = {
|
| 220 |
+
"click": "function(params) { return params.value }"
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
value = st_echarts(options=options, events=events, height="500px")
|
| 224 |
+
|
| 225 |
+
if value != None:
|
| 226 |
+
# print(value)
|
| 227 |
+
nav_to(links_dic[value])
|
| 228 |
+
|
| 229 |
+
# if value != None:
|
| 230 |
+
# highlight_table_line(value)
|
| 231 |
+
|
| 232 |
+
### create table
|
| 233 |
+
st.divider()
|
| 234 |
+
# chart_data['Link'] = chart_data['Model'].map(links_dic)
|
| 235 |
+
st.dataframe(chart_data,
|
| 236 |
+
# column_config = {
|
| 237 |
+
# "Link": st.column_config.LinkColumn(
|
| 238 |
+
# display_text= st.image(huggingface_image)
|
| 239 |
+
# ),
|
| 240 |
+
# },
|
| 241 |
+
hide_index = True,
|
| 242 |
+
use_container_width=True)
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def draw_only_acc(folder_name, category_one, category_two, sorted):
|
| 247 |
+
# Cultural Reasonling / General Reasoning / Emotion / Fundamental NLP Tasks
|
| 248 |
+
|
| 249 |
+
folder = f"./results/{folder_name}/"
|
| 250 |
+
category_two_dict = {}
|
| 251 |
+
|
| 252 |
+
if folder_name == 'cultural_reasoning':
|
| 253 |
+
category_two_dict = {'SG EVAL': 'sg_eval',
|
| 254 |
+
'US EVAL': 'us_eval',
|
| 255 |
+
'CN EVAL': 'cn_eval',
|
| 256 |
+
'PH EVAL': 'ph_eval'}
|
| 257 |
+
elif folder_name == 'general_reasoning':
|
| 258 |
+
category_two_dict = {'MMLU': 'mmlu',
|
| 259 |
+
'C Eval': 'c_eval',
|
| 260 |
+
'CMMLU': 'cmmlu',
|
| 261 |
+
'ZBench': 'zbench',
|
| 262 |
+
'IndoMMLU': 'indommlu'}
|
| 263 |
+
|
| 264 |
+
elif folder_name == 'emotion':
|
| 265 |
+
category_two_dict = {'Indonesian Emotion Classification': 'ind_emotion',
|
| 266 |
+
'SST2': 'sst2'}
|
| 267 |
+
|
| 268 |
+
elif folder_name == 'fundamental_nlp_tasks':
|
| 269 |
+
category_two_dict = {'OCNLI': 'ocnli',
|
| 270 |
+
'C3': 'c3',
|
| 271 |
+
'COLA': 'cola',
|
| 272 |
+
'QQP': 'qqp',
|
| 273 |
+
'MNLI': 'mnli',
|
| 274 |
+
'QNLI': 'qnli',
|
| 275 |
+
'WNLI': 'wnli',
|
| 276 |
+
'RTE': 'rte',
|
| 277 |
+
'MRPC': 'mrpc'}
|
| 278 |
+
|
| 279 |
+
subtitle = category_two_dict[category_two]
|
| 280 |
+
data_path = f'{folder}/{category_one}/{subtitle}.csv'
|
| 281 |
+
chart_data = pd.read_csv(data_path).round(2)
|
| 282 |
+
|
| 283 |
+
if sorted == 'Ascending':
|
| 284 |
+
ascend = True
|
| 285 |
+
else:
|
| 286 |
+
ascend = False
|
| 287 |
+
|
| 288 |
+
chart_data = chart_data.sort_values(by=['Accuracy'], ascending=ascend)
|
| 289 |
+
|
| 290 |
+
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
|
| 291 |
+
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
|
| 292 |
+
|
| 293 |
+
options = {
|
| 294 |
+
"title": {"text": f"{category_two}"},
|
| 295 |
+
"tooltip": {
|
| 296 |
+
"trigger": "axis",
|
| 297 |
+
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 298 |
+
"triggerOn": 'mousemove',
|
| 299 |
+
},
|
| 300 |
+
"legend": {"data": ['Overall Accuracy']},
|
| 301 |
+
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 302 |
+
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 303 |
+
"xAxis": [
|
| 304 |
+
{
|
| 305 |
+
"type": "category",
|
| 306 |
+
"boundaryGap": False,
|
| 307 |
+
"triggerEvent": True,
|
| 308 |
+
"data": chart_data['Model'].tolist(),
|
| 309 |
+
}
|
| 310 |
+
],
|
| 311 |
+
"yAxis": [{"type": "value",
|
| 312 |
+
"min": min_value,
|
| 313 |
+
"max": max_value,
|
| 314 |
+
# "splitNumber": 10
|
| 315 |
+
}],
|
| 316 |
+
"series": [
|
| 317 |
+
{
|
| 318 |
+
"name": "Overall Accuracy",
|
| 319 |
+
"type": "line",
|
| 320 |
+
"data": chart_data['Accuracy'].tolist(),
|
| 321 |
+
},
|
| 322 |
+
|
| 323 |
+
],
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
events = {
|
| 327 |
+
"click": "function(params) { return params.value }"
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
value = st_echarts(options=options, events=events, height="500px")
|
| 331 |
+
|
| 332 |
+
if value != None:
|
| 333 |
+
# print(value)
|
| 334 |
+
nav_to(links_dic[value])
|
| 335 |
+
|
| 336 |
+
# if value != None:
|
| 337 |
+
# highlight_table_line(value)
|
| 338 |
+
|
| 339 |
+
### create table
|
| 340 |
+
st.divider()
|
| 341 |
+
# chart_data['Link'] = chart_data['Model'].map(links_dic)
|
| 342 |
+
st.dataframe(chart_data,
|
| 343 |
+
# column_config = {
|
| 344 |
+
# "Link": st.column_config.LinkColumn(
|
| 345 |
+
# display_text= st.image(huggingface_image)
|
| 346 |
+
# ),
|
| 347 |
+
# },
|
| 348 |
+
hide_index = True,
|
| 349 |
+
use_container_width=True)
|
| 350 |
+
|
| 351 |
+
def draw_flores_translation(category_one, category_two, sorted):
|
| 352 |
+
folder = "./results/flores_translation/"
|
| 353 |
+
category_two_dict = {'Indonesian to English': 'ind2eng',
|
| 354 |
+
'Vitenamese to English': 'vie2eng',
|
| 355 |
+
'Chinese to English': 'zho2eng',
|
| 356 |
+
'Nalay to English': 'zsm2eng'}
|
| 357 |
+
|
| 358 |
+
subtitle = category_two_dict[category_two]
|
| 359 |
+
|
| 360 |
+
data_path = f'{folder}/{category_one}/{subtitle}.csv'
|
| 361 |
+
chart_data = pd.read_csv(data_path).round(2)
|
| 362 |
+
|
| 363 |
+
if sorted == 'Ascending':
|
| 364 |
+
ascend = True
|
| 365 |
+
else:
|
| 366 |
+
ascend = False
|
| 367 |
+
|
| 368 |
+
chart_data = chart_data.sort_values(by=['BLEU'], ascending=ascend)
|
| 369 |
+
|
| 370 |
+
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
|
| 371 |
+
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
|
| 372 |
+
|
| 373 |
+
options = {
|
| 374 |
+
"title": {"text": f"{category_two}"},
|
| 375 |
+
"tooltip": {
|
| 376 |
+
"trigger": "axis",
|
| 377 |
+
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 378 |
+
"triggerOn": 'mousemove',
|
| 379 |
+
},
|
| 380 |
+
"legend": {"data": ['BLEU']},
|
| 381 |
+
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 382 |
+
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 383 |
+
"xAxis": [
|
| 384 |
+
{
|
| 385 |
+
"type": "category",
|
| 386 |
+
"boundaryGap": False,
|
| 387 |
+
"triggerEvent": True,
|
| 388 |
+
"data": chart_data['Model'].tolist(),
|
| 389 |
+
}
|
| 390 |
+
],
|
| 391 |
+
"yAxis": [{"type": "value",
|
| 392 |
+
"min": min_value,
|
| 393 |
+
"max": max_value,
|
| 394 |
+
# "splitNumber": 10
|
| 395 |
+
}],
|
| 396 |
+
"series": [
|
| 397 |
+
{
|
| 398 |
+
"name": "BLEU",
|
| 399 |
+
"type": "line",
|
| 400 |
+
"data": chart_data['BLEU'].tolist(),
|
| 401 |
+
},
|
| 402 |
+
|
| 403 |
+
],
|
| 404 |
+
}
|
| 405 |
+
|
| 406 |
+
events = {
|
| 407 |
+
"click": "function(params) { return params.value }"
|
| 408 |
+
}
|
| 409 |
+
|
| 410 |
+
value = st_echarts(options=options, events=events, height="500px")
|
| 411 |
+
|
| 412 |
+
if value != None:
|
| 413 |
+
# print(value)
|
| 414 |
+
nav_to(links_dic[value])
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
### create table
|
| 418 |
+
st.divider()
|
| 419 |
+
# chart_data['Link'] = chart_data['Model'].map(links_dic)
|
| 420 |
+
st.dataframe(chart_data,
|
| 421 |
+
# column_config = {
|
| 422 |
+
# "Link": st.column_config.LinkColumn(
|
| 423 |
+
# display_text= st.image(huggingface_image)
|
| 424 |
+
# ),
|
| 425 |
+
# },
|
| 426 |
+
hide_index = True,
|
| 427 |
+
use_container_width=True)
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
def draw_dialogue(category_one, category_two, sort, sorted):
|
| 431 |
+
folder = "./results/dialogue"
|
| 432 |
+
category_two_dict = {'DREAM': 'dream',
|
| 433 |
+
'SAMSum': 'samsum',
|
| 434 |
+
'DialogSum': 'dialogsum'}
|
| 435 |
+
|
| 436 |
+
subtitle = category_two_dict[category_two]
|
| 437 |
+
|
| 438 |
+
data_path = f'{folder}/{category_one}/{subtitle}.csv'
|
| 439 |
+
chart_data = pd.read_csv(data_path).round(2)
|
| 440 |
+
|
| 441 |
+
if sorted == 'Ascending':
|
| 442 |
+
ascend = True
|
| 443 |
+
else:
|
| 444 |
+
ascend = False
|
| 445 |
+
|
| 446 |
+
chart_data = chart_data.sort_values(by=[sort], ascending=ascend)
|
| 447 |
+
|
| 448 |
+
min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1)
|
| 449 |
+
max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1)
|
| 450 |
+
|
| 451 |
+
options = {}
|
| 452 |
+
if category_two in ['SAMSum', 'DialogSum']:
|
| 453 |
+
options = {
|
| 454 |
+
"title": {"text": f"{category_two}"},
|
| 455 |
+
"tooltip": {
|
| 456 |
+
"trigger": "axis",
|
| 457 |
+
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 458 |
+
"triggerOn": 'mousemove',
|
| 459 |
+
},
|
| 460 |
+
"legend": {"data": list(chart_data.columns)},
|
| 461 |
+
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 462 |
+
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 463 |
+
"xAxis": [
|
| 464 |
+
{
|
| 465 |
+
"type": "category",
|
| 466 |
+
"boundaryGap": False,
|
| 467 |
+
"triggerEvent": True,
|
| 468 |
+
"data": chart_data['Model'].tolist(),
|
| 469 |
+
}
|
| 470 |
+
],
|
| 471 |
+
"yAxis": [{"type": "value",
|
| 472 |
+
"min": min_value,
|
| 473 |
+
"max": max_value,
|
| 474 |
+
# "splitNumber": 10
|
| 475 |
+
}],
|
| 476 |
+
"series": [
|
| 477 |
+
{
|
| 478 |
+
"name": "Average",
|
| 479 |
+
"type": "line",
|
| 480 |
+
"data": chart_data['Average'].tolist(),
|
| 481 |
+
},
|
| 482 |
+
{
|
| 483 |
+
"name": "ROUGE-1",
|
| 484 |
+
"type": "line",
|
| 485 |
+
"data": chart_data["ROUGE-1"].tolist(),
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"name": "ROUGE-2",
|
| 489 |
+
"type": "line",
|
| 490 |
+
"data": chart_data["ROUGE-2"].tolist(),
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"name": "ROUGE-L",
|
| 494 |
+
"type": "line",
|
| 495 |
+
"data": chart_data["ROUGE-L"].tolist(),
|
| 496 |
+
},
|
| 497 |
+
|
| 498 |
+
],
|
| 499 |
+
}
|
| 500 |
+
|
| 501 |
+
elif category_two == 'DREAM':
|
| 502 |
+
options = {
|
| 503 |
+
"title": {"text": f"{category_two}"},
|
| 504 |
+
"tooltip": {
|
| 505 |
+
"trigger": "axis",
|
| 506 |
+
"axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
|
| 507 |
+
"triggerOn": 'mousemove',
|
| 508 |
+
},
|
| 509 |
+
"legend": {"data": list(chart_data.columns)},
|
| 510 |
+
"toolbox": {"feature": {"saveAsImage": {}}},
|
| 511 |
+
"grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
|
| 512 |
+
"xAxis": [
|
| 513 |
+
{
|
| 514 |
+
"type": "category",
|
| 515 |
+
"boundaryGap": False,
|
| 516 |
+
"triggerEvent": True,
|
| 517 |
+
"data": chart_data['Model'].tolist(),
|
| 518 |
+
}
|
| 519 |
+
],
|
| 520 |
+
"yAxis": [{"type": "value",
|
| 521 |
+
"min": min_value,
|
| 522 |
+
"max": max_value,
|
| 523 |
+
# "splitNumber": 10
|
| 524 |
+
}],
|
| 525 |
+
"series": [
|
| 526 |
+
{
|
| 527 |
+
"name": "Accuracy",
|
| 528 |
+
"type": "line",
|
| 529 |
+
"data": chart_data['Accuracy'].tolist(),
|
| 530 |
+
},
|
| 531 |
+
|
| 532 |
+
],
|
| 533 |
+
}
|
| 534 |
+
|
| 535 |
+
events = {
|
| 536 |
+
"click": "function(params) { return params.value }"
|
| 537 |
+
}
|
| 538 |
+
|
| 539 |
+
value = st_echarts(options=options, events=events, height="500px")
|
| 540 |
+
|
| 541 |
+
if value != None:
|
| 542 |
+
# print(value)
|
| 543 |
+
nav_to(links_dic[value])
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
### create table
|
| 547 |
+
st.divider()
|
| 548 |
+
# chart_data['Link'] = chart_data['Model'].map(links_dic)
|
| 549 |
+
st.dataframe(chart_data,
|
| 550 |
+
# column_config = {
|
| 551 |
+
# "Link": st.column_config.LinkColumn(
|
| 552 |
+
# display_text= st.image(huggingface_image)
|
| 553 |
+
# ),
|
| 554 |
+
# },
|
| 555 |
+
hide_index = True,
|
| 556 |
+
use_container_width=True)
|
app/pages.py
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from draw_diagram import *
|
| 3 |
+
|
| 4 |
+
def dashboard():
|
| 5 |
+
st.title("SeaEval")
|
| 6 |
+
|
| 7 |
+
"""
|
| 8 |
+
[gh]: https://github.com/SeaEval/SeaEval
|
| 9 |
+
[][gh]
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
seaeval_url = "https://seaeval.github.io/"
|
| 13 |
+
st.markdown("[SeaEval](%s) is the new benchmark for multilingual foundation models consisting of 28 dataset." % seaeval_url)
|
| 14 |
+
st.markdown(".... haven't finished yet ...")
|
| 15 |
+
|
| 16 |
+
def cross_lingual_consistency():
|
| 17 |
+
st.title("Cross-Lingual Consistency")
|
| 18 |
+
|
| 19 |
+
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 20 |
+
filters_leveltwo = ['Cross-MMLU', 'Cross-XQUAD', 'Cross-LogiQA']
|
| 21 |
+
|
| 22 |
+
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 23 |
+
'Few Shot': 'few_shot'}
|
| 24 |
+
category_two_dict = {'Cross-MMLU': 'cross_mmlu',
|
| 25 |
+
'Cross-XQUAD': 'cross_xquad',
|
| 26 |
+
'Cross-LogiQA': 'cross_logiqa'}
|
| 27 |
+
|
| 28 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 29 |
+
with left:
|
| 30 |
+
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
|
| 31 |
+
with center:
|
| 32 |
+
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 33 |
+
with middle:
|
| 34 |
+
sort = st.selectbox('Sort', ['Accuracy','Cross-Lingual Consistency', 'AC3',
|
| 35 |
+
'English', 'Chinese', 'Spanish', 'Vietnamese'])
|
| 36 |
+
with right:
|
| 37 |
+
sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 38 |
+
|
| 39 |
+
if category_one or category_two or sort or sorted:
|
| 40 |
+
category_one = category_one_dict[category_one]
|
| 41 |
+
category_two = category_two_dict[category_two]
|
| 42 |
+
|
| 43 |
+
draw_cross_lingual(category_one, category_two, sort, sorted)
|
| 44 |
+
else:
|
| 45 |
+
draw_cross_lingual('zero_shot', 'cross_mmlu', 'Accuracy', 'Descending')
|
| 46 |
+
|
| 47 |
+
def cultural_reasoning():
|
| 48 |
+
st.title("Cultural Reasoning")
|
| 49 |
+
|
| 50 |
+
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 51 |
+
filters_leveltwo = ['SG EVAL', 'CN EVAL', 'PH EVAL', 'US EVAL']
|
| 52 |
+
|
| 53 |
+
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 54 |
+
'Few Shot': 'few_shot'}
|
| 55 |
+
|
| 56 |
+
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 57 |
+
with left:
|
| 58 |
+
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
|
| 59 |
+
with center:
|
| 60 |
+
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 61 |
+
with right:
|
| 62 |
+
sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
|
| 63 |
+
|
| 64 |
+
if category_one or category_two or sorted:
|
| 65 |
+
category_one = category_one_dict[category_one]
|
| 66 |
+
draw_only_acc('cultural_reasoning', category_one, category_two, sorted)
|
| 67 |
+
else:
|
| 68 |
+
draw_only_acc('cultural_reasoning', 'zero_shot', 'sg_eval', 'Descending')
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def general_reasoning():
|
| 72 |
+
st.title("General Reasoning")
|
| 73 |
+
|
| 74 |
+
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 75 |
+
filters_leveltwo = ['MMLU', 'C Eval', 'CMMLU', 'ZBench', 'IndoMMLU']
|
| 76 |
+
|
| 77 |
+
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 78 |
+
'Few Shot': 'few_shot'}
|
| 79 |
+
|
| 80 |
+
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 81 |
+
with left:
|
| 82 |
+
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
|
| 83 |
+
with center:
|
| 84 |
+
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 85 |
+
with right:
|
| 86 |
+
sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
|
| 87 |
+
|
| 88 |
+
if category_one or category_two or sorted:
|
| 89 |
+
category_one = category_one_dict[category_one]
|
| 90 |
+
draw_only_acc('general_reasoning', category_one, category_two, sorted)
|
| 91 |
+
else:
|
| 92 |
+
draw_only_acc('general_reasoning', 'zero_shot', 'MMLU Full', 'Descending')
|
| 93 |
+
|
| 94 |
+
def flores():
|
| 95 |
+
st.title("FLORES-Translation")
|
| 96 |
+
|
| 97 |
+
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 98 |
+
filters_leveltwo = ['Indonesian to English', 'Vitenamese to English', 'Chinese to English', 'Nalay to English']
|
| 99 |
+
|
| 100 |
+
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 101 |
+
'Few Shot': 'few_shot'}
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 105 |
+
with left:
|
| 106 |
+
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
|
| 107 |
+
with center:
|
| 108 |
+
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 109 |
+
with right:
|
| 110 |
+
sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
|
| 111 |
+
|
| 112 |
+
if category_one or category_two or sorted:
|
| 113 |
+
category_one = category_one_dict[category_one]
|
| 114 |
+
draw_flores_translation(category_one, category_two, sorted)
|
| 115 |
+
else:
|
| 116 |
+
draw_flores_translation('zero_shot', 'Indonesian to English', 'Descending')
|
| 117 |
+
|
| 118 |
+
def emotion():
|
| 119 |
+
st.title("Emotion")
|
| 120 |
+
|
| 121 |
+
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 122 |
+
filters_leveltwo = ['Indonesian Emotion Classification', 'SST2']
|
| 123 |
+
|
| 124 |
+
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 125 |
+
'Few Shot': 'few_shot'}
|
| 126 |
+
|
| 127 |
+
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 128 |
+
with left:
|
| 129 |
+
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
|
| 130 |
+
with center:
|
| 131 |
+
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 132 |
+
with right:
|
| 133 |
+
sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
|
| 134 |
+
|
| 135 |
+
if category_one or category_two or sorted:
|
| 136 |
+
category_one = category_one_dict[category_one]
|
| 137 |
+
draw_only_acc('emotion', category_one, category_two, sorted)
|
| 138 |
+
else:
|
| 139 |
+
draw_only_acc('emotion', 'zero_shot', 'Indonesian Emotion Classification', 'Descending')
|
| 140 |
+
|
| 141 |
+
def dialogue():
|
| 142 |
+
st.title("Dialogue")
|
| 143 |
+
|
| 144 |
+
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 145 |
+
filters_leveltwo = ['DREAM', 'SAMSum', 'DialogSum']
|
| 146 |
+
|
| 147 |
+
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 148 |
+
'Few Shot': 'few_shot'}
|
| 149 |
+
|
| 150 |
+
left, center, _, middle,right = st.columns([0.2, 0.2, 0.2, 0.2 ,0.2])
|
| 151 |
+
with left:
|
| 152 |
+
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
|
| 153 |
+
with center:
|
| 154 |
+
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 155 |
+
with middle:
|
| 156 |
+
if category_two == 'DREAM':
|
| 157 |
+
sort = st.selectbox('Sort', ['Accuracy'])
|
| 158 |
+
else:
|
| 159 |
+
sort = st.selectbox('Sort', ['Average', 'ROUGE-1', 'ROUGE-2', 'ROUGE-L'])
|
| 160 |
+
|
| 161 |
+
with right:
|
| 162 |
+
sorted = st.selectbox('by', ['Ascending', 'Descending'])
|
| 163 |
+
|
| 164 |
+
if category_one or category_two or sort or sorted:
|
| 165 |
+
category_one = category_one_dict[category_one]
|
| 166 |
+
draw_dialogue(category_one, category_two, sort, sorted)
|
| 167 |
+
else:
|
| 168 |
+
draw_dialogue('zero_shot', 'DREAM', sort[0],'Descending')
|
| 169 |
+
|
| 170 |
+
def fundamental_nlp_tasks():
|
| 171 |
+
st.title("Fundamental NLP Tasks")
|
| 172 |
+
|
| 173 |
+
filters_levelone = ['Zero Shot', 'Few Shot']
|
| 174 |
+
filters_leveltwo = ['OCNLI', 'C3', 'COLA', 'QQP', 'MNLI', 'QNLI', 'WNLI', 'RTE', 'MRPC']
|
| 175 |
+
|
| 176 |
+
category_one_dict = {'Zero Shot': 'zero_shot',
|
| 177 |
+
'Few Shot': 'few_shot'}
|
| 178 |
+
|
| 179 |
+
left, center, _, right = st.columns([0.2, 0.2, 0.4, 0.2])
|
| 180 |
+
with left:
|
| 181 |
+
category_one = st.selectbox('Select Zero / Few shot', filters_levelone)
|
| 182 |
+
with center:
|
| 183 |
+
category_two = st.selectbox('Select the sub-category', filters_leveltwo)
|
| 184 |
+
with right:
|
| 185 |
+
sorted = st.selectbox('sorted by', ['Ascending', 'Descending'])
|
| 186 |
+
|
| 187 |
+
if category_one or category_two or sorted:
|
| 188 |
+
category_one = category_one_dict[category_one]
|
| 189 |
+
draw_only_acc('fundamental_nlp_tasks', category_one, category_two, sorted)
|
| 190 |
+
else:
|
| 191 |
+
draw_only_acc('fundamental_nlp_tasks', 'zero_shot', 'OCNLI', 'Descending')
|