Spaces:
Running
on
Zero
Running
on
Zero
| from typing import Union, List | |
| import torch | |
| import torch.nn as nn | |
| from typing import Callable | |
| from src.diffusion.base.scheduling import BaseScheduler | |
| class BaseSampler(nn.Module): | |
| def __init__(self, | |
| scheduler: BaseScheduler = None, | |
| guidance_fn: Callable = None, | |
| num_steps: int = 250, | |
| guidance: Union[float, List[float]] = 1.0, | |
| *args, | |
| **kwargs | |
| ): | |
| super(BaseSampler, self).__init__() | |
| self.num_steps = num_steps | |
| self.guidance = guidance | |
| self.guidance_fn = guidance_fn | |
| self.scheduler = scheduler | |
| def _impl_sampling(self, net, noise, condition, uncondition): | |
| raise NotImplementedError | |
| def forward(self, net, noise, condition, uncondition, return_x_trajs=False, return_v_trajs=False): | |
| x_trajs, v_trajs = self._impl_sampling(net, noise, condition, uncondition) | |
| if return_x_trajs and return_v_trajs: | |
| return x_trajs[-1], x_trajs, v_trajs | |
| elif return_x_trajs: | |
| return x_trajs[-1], x_trajs | |
| elif return_v_trajs: | |
| return x_trajs[-1], v_trajs | |
| else: | |
| return x_trajs[-1] | |