Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| from src.diffusion.base.sampling import * | |
| from src.diffusion.base.scheduling import * | |
| from src.diffusion.pre_integral import * | |
| from typing import Callable, List, Tuple | |
| def ode_step_fn(x, v, dt, s, w): | |
| return x + v * dt | |
| def t2snr(t): | |
| if isinstance(t, torch.Tensor): | |
| return (t.clip(min=1e-8)/(1-t + 1e-8)) | |
| if isinstance(t, List) or isinstance(t, Tuple): | |
| return [t2snr(t) for t in t] | |
| t = max(t, 1e-8) | |
| return (t/(1-t + 1e-8)) | |
| def t2logsnr(t): | |
| if isinstance(t, torch.Tensor): | |
| return torch.log(t.clip(min=1e-3)/(1-t + 1e-3)) | |
| if isinstance(t, List) or isinstance(t, Tuple): | |
| return [t2logsnr(t) for t in t] | |
| t = max(t, 1e-3) | |
| return math.log(t/(1-t + 1e-3)) | |
| def t2isnr(t): | |
| return 1/t2snr(t) | |
| def nop(t): | |
| return t | |
| def shift_respace_fn(t, shift=3.0): | |
| return t / (t + (1 - t) * shift) | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| class AdamLMSampler(BaseSampler): | |
| def __init__( | |
| self, | |
| order: int = 2, | |
| timeshift: float = 1.0, | |
| lms_transform_fn: Callable = nop, | |
| w_scheduler: BaseScheduler = None, | |
| step_fn: Callable = ode_step_fn, | |
| *args, | |
| **kwargs | |
| ): | |
| super().__init__(*args, **kwargs) | |
| self.step_fn = step_fn | |
| self.w_scheduler = w_scheduler | |
| assert self.scheduler is not None | |
| assert self.w_scheduler is not None or self.step_fn in [ode_step_fn, ] | |
| self.order = order | |
| self.lms_transform_fn = lms_transform_fn | |
| timesteps = torch.linspace(0.0, 1 - self.last_step, self.num_steps) | |
| timesteps = torch.cat([timesteps, torch.tensor([1.0])], dim=0) | |
| self.timesteps = shift_respace_fn(timesteps, timeshift) | |
| self.timedeltas = timesteps[1:] - self.timesteps[:-1] | |
| self._reparameterize_coeffs() | |
| def _reparameterize_coeffs(self): | |
| solver_coeffs = [[] for _ in range(self.num_steps)] | |
| for i in range(0, self.num_steps): | |
| pre_vs = [1.0, ]*(i+1) | |
| pre_ts = self.lms_transform_fn(self.timesteps[:i+1]) | |
| int_t_start = self.lms_transform_fn(self.timesteps[i]) | |
| int_t_end = self.lms_transform_fn(self.timesteps[i+1]) | |
| order_annealing = self.order #self.num_steps - i | |
| order = min(self.order, i + 1, order_annealing) | |
| _, coeffs = lagrange_preint(order, pre_vs, pre_ts, int_t_start, int_t_end) | |
| solver_coeffs[i] = coeffs | |
| self.solver_coeffs = solver_coeffs | |
| def _impl_sampling(self, net, noise, condition, uncondition): | |
| """ | |
| sampling process of Euler sampler | |
| - | |
| """ | |
| batch_size = noise.shape[0] | |
| cfg_condition = torch.cat([uncondition, condition], dim=0) | |
| x = x0 = noise | |
| pred_trajectory = [] | |
| t_cur = torch.zeros([batch_size,]).to(noise.device, noise.dtype) | |
| timedeltas = self.timedeltas | |
| solver_coeffs = self.solver_coeffs | |
| for i in range(self.num_steps): | |
| cfg_x = torch.cat([x, x], dim=0) | |
| cfg_t = t_cur.repeat(2) | |
| out = net(cfg_x, cfg_t, cfg_condition) | |
| out = self.guidance_fn(out, self.guidances[i]) | |
| pred_trajectory.append(out) | |
| out = torch.zeros_like(out) | |
| order = len(self.solver_coeffs[i]) | |
| for j in range(order): | |
| out += solver_coeffs[i][j] * pred_trajectory[-order:][j] | |
| v = out | |
| dt = timedeltas[i] | |
| x0 = self.step_fn(x, v, 1-t_cur[0], s=0, w=0) | |
| x = self.step_fn(x, v, dt, s=0, w=0) | |
| t_cur += dt | |
| return x |