Spaces:
Running
on
T4
Running
on
T4
| """ | |
| This is just a utility that I use to extract the projector for quantized models. | |
| It is NOT necessary at all to train, or run inference/serve demos. | |
| Use this script ONLY if you fully understand its implications. | |
| """ | |
| import os | |
| import argparse | |
| import torch | |
| import json | |
| from collections import defaultdict | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description='Extract MMProjector weights') | |
| parser.add_argument('--model-path', type=str, help='model folder') | |
| parser.add_argument('--output', type=str, help='output file') | |
| args = parser.parse_args() | |
| return args | |
| if __name__ == '__main__': | |
| args = parse_args() | |
| keys_to_match = ['mm_projector'] | |
| ckpt_to_key = defaultdict(list) | |
| try: | |
| model_indices = json.load(open(os.path.join(args.model_path, 'pytorch_model.bin.index.json'))) | |
| for k, v in model_indices['weight_map'].items(): | |
| if any(key_match in k for key_match in keys_to_match): | |
| ckpt_to_key[v].append(k) | |
| except FileNotFoundError: | |
| # Smaller models or model checkpoints saved by DeepSpeed. | |
| v = 'pytorch_model.bin' | |
| for k in torch.load(os.path.join(args.model_path, v), map_location='cpu').keys(): | |
| if any(key_match in k for key_match in keys_to_match): | |
| ckpt_to_key[v].append(k) | |
| loaded_weights = {} | |
| for ckpt_name, weight_keys in ckpt_to_key.items(): | |
| ckpt = torch.load(os.path.join(args.model_path, ckpt_name), map_location='cpu') | |
| for k in weight_keys: | |
| loaded_weights[k] = ckpt[k] | |
| torch.save(loaded_weights, args.output) | |