Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import re
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
from huggingface_hub import HfApi, DatasetCard, DatasetCardData, create_repo
|
| 7 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 8 |
+
import os
|
| 9 |
+
import tempfile
|
| 10 |
+
|
| 11 |
+
# --- Configuration ---
|
| 12 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 13 |
+
DATASET_REPO_ID = os.getenv("DATASET_REPO", "Lyte/tokenizer-leaderboard")
|
| 14 |
+
DATASET_FILE_NAME = "leaderboard.csv"
|
| 15 |
+
|
| 16 |
+
PREDEFINED_TEXT = '''
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from transformers import AutoTokenizer
|
| 19 |
+
import pandas as pd
|
| 20 |
+
import re
|
| 21 |
+
from datetime import datetime
|
| 22 |
+
from huggingface_hub import HfApi, DatasetCard, DatasetCardData, create_repo
|
| 23 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 24 |
+
import os
|
| 25 |
+
import tempfile
|
| 26 |
+
|
| 27 |
+
# --- Configuration ---
|
| 28 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 29 |
+
DATASET_REPO_ID = os.getenv("DATASET_REPO", "Lyte/tokenizer-leaderboard")
|
| 30 |
+
DATASET_FILE_NAME = "leaderboard.csv"
|
| 31 |
+
|
| 32 |
+
PREDEFINED_TEXT = """
|
| 33 |
+
The quick brown fox jumps over 12 lazy dogs! 🐕🦺
|
| 34 |
+
Special characters: #@%^&*()_+-=[]{}|;:'",.<>/?\\~
|
| 35 |
+
Code samples:
|
| 36 |
+
- Python: def hello(): print("Hello World! 2023")
|
| 37 |
+
- HTML: <div class="container" id="main">Content</div>
|
| 38 |
+
- JSON: {"key": "value", "numbers": [1, 2, 3.14]}
|
| 39 |
+
Math equations: E = mc² → 3×10⁸ m/s
|
| 40 |
+
Multilingual text: 速い茶色の狐が怠惰な犬を飛び越える 😸
|
| 41 |
+
Emojis: 👍🎉🚀❤️🔥
|
| 42 |
+
Mixed casing: OpenAI's GPT-4 vs gpt-3.5-turbo
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
WORD_COUNT = len(re.findall(r'\S+', PREDEFINED_TEXT))
|
| 46 |
+
LEADERBOARD_COLUMNS = [
|
| 47 |
+
"Model ID", "Token Count", "Vocab Size",
|
| 48 |
+
"Tokens/Word", "Chars/Token", "Timestamp"
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
# --- Hugging Face Hub Functions ---
|
| 52 |
+
def create_huggingface_dataset():
|
| 53 |
+
"""Creates the dataset repository on the Hub if it doesn't exist."""
|
| 54 |
+
try:
|
| 55 |
+
api = HfApi(token=HF_TOKEN)
|
| 56 |
+
create_repo(repo_id=DATASET_REPO_ID, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
|
| 57 |
+
|
| 58 |
+
card_data = DatasetCardData(
|
| 59 |
+
language="en",
|
| 60 |
+
license="mit",
|
| 61 |
+
size_categories=["1K<n<10K"],
|
| 62 |
+
tags=["tokenizer", "leaderboard", "performance", "gradio"],
|
| 63 |
+
)
|
| 64 |
+
card = DatasetCard.from_template(
|
| 65 |
+
card_data,
|
| 66 |
+
template_path=None,
|
| 67 |
+
Title="Tokenizer Leaderboard",
|
| 68 |
+
Description="A leaderboard of tokenizer performance based on various metrics.",
|
| 69 |
+
How_to_use="The leaderboard data is stored in a CSV file named 'leaderboard.csv'.",
|
| 70 |
+
)
|
| 71 |
+
card.push_to_hub(repo_id=DATASET_REPO_ID, token=HF_TOKEN)
|
| 72 |
+
print(f"Dataset repository '{DATASET_REPO_ID}' created (or already exists).")
|
| 73 |
+
|
| 74 |
+
except Exception as e:
|
| 75 |
+
print(f"Error creating dataset repository: {e}")
|
| 76 |
+
raise
|
| 77 |
+
|
| 78 |
+
def load_leaderboard_from_hub():
|
| 79 |
+
"""Loads the leaderboard data from the Hugging Face Hub as a pandas DataFrame."""
|
| 80 |
+
try:
|
| 81 |
+
api = HfApi(token=HF_TOKEN)
|
| 82 |
+
dataset_path = api.dataset_info(repo_id=DATASET_REPO_ID, token=HF_TOKEN).siblings
|
| 83 |
+
csv_file_info = next((file for file in dataset_path if file.rfilename == DATASET_FILE_NAME), None)
|
| 84 |
+
|
| 85 |
+
if csv_file_info is None:
|
| 86 |
+
print(f"'{DATASET_FILE_NAME}' not found in '{DATASET_REPO_ID}'. Returning an empty DataFrame")
|
| 87 |
+
return pd.DataFrame(columns=LEADERBOARD_COLUMNS)
|
| 88 |
+
|
| 89 |
+
file_path = api.hf_hub_download(repo_id=DATASET_REPO_ID, filename=DATASET_FILE_NAME, repo_type="dataset")
|
| 90 |
+
df = pd.read_csv(file_path)
|
| 91 |
+
df = df.sort_values(by="Token Count", ascending=True)
|
| 92 |
+
df["Tokens/Word"] = df["Tokens/Word"].round(2)
|
| 93 |
+
df["Chars/Token"] = df["Chars/Token"].round(2)
|
| 94 |
+
return df
|
| 95 |
+
|
| 96 |
+
except Exception as e:
|
| 97 |
+
print(f"Error loading leaderboard from Hugging Face Hub: {e}")
|
| 98 |
+
return pd.DataFrame(columns=LEADERBOARD_COLUMNS)
|
| 99 |
+
|
| 100 |
+
def push_leaderboard_to_hub(df):
|
| 101 |
+
"""Pushes the updated leaderboard DataFrame to the Hugging Face Hub."""
|
| 102 |
+
try:
|
| 103 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".csv") as tmpfile:
|
| 104 |
+
df.to_csv(tmpfile.name, index=False)
|
| 105 |
+
tmp_path = tmpfile.name
|
| 106 |
+
|
| 107 |
+
api = HfApi(token=HF_TOKEN)
|
| 108 |
+
api.upload_file(
|
| 109 |
+
path_or_fileobj=tmp_path,
|
| 110 |
+
path_in_repo=DATASET_FILE_NAME,
|
| 111 |
+
repo_id=DATASET_REPO_ID,
|
| 112 |
+
repo_type="dataset",
|
| 113 |
+
token=HF_TOKEN,
|
| 114 |
+
commit_message="Update leaderboard"
|
| 115 |
+
)
|
| 116 |
+
os.remove(tmp_path)
|
| 117 |
+
|
| 118 |
+
print(f"Leaderboard updated and pushed to {DATASET_REPO_ID}")
|
| 119 |
+
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"Error pushing leaderboard to Hugging Face Hub: {e}")
|
| 122 |
+
raise
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# --- Utility Functions ---
|
| 126 |
+
|
| 127 |
+
def get_tokenizer_stats(model_id, text):
|
| 128 |
+
if not model_id:
|
| 129 |
+
raise ValueError("No model ID provided")
|
| 130 |
+
try:
|
| 131 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN, trust_remote_code=True)
|
| 132 |
+
tokens = tokenizer.encode(text, add_special_tokens=False)
|
| 133 |
+
text_length = len(text)
|
| 134 |
+
return {
|
| 135 |
+
"token_count": len(tokens),
|
| 136 |
+
"vocab_size": tokenizer.vocab_size,
|
| 137 |
+
"token_word_ratio": round(len(tokens) / WORD_COUNT, 2),
|
| 138 |
+
"chars_per_token": round(text_length / len(tokens), 2) if tokens else 0
|
| 139 |
+
}
|
| 140 |
+
except Exception as e:
|
| 141 |
+
raise RuntimeError(f"Failed to load tokenizer or encode text: {str(e)}") from e
|
| 142 |
+
|
| 143 |
+
def is_model_in_leaderboard(df, model_id):
|
| 144 |
+
return model_id in df["Model ID"].values
|
| 145 |
+
|
| 146 |
+
def add_to_leaderboard(model_id):
|
| 147 |
+
if not model_id:
|
| 148 |
+
return "❌ Error: No model ID provided"
|
| 149 |
+
df = load_leaderboard_from_hub()
|
| 150 |
+
if is_model_in_leaderboard(df, model_id):
|
| 151 |
+
return "⚠️ Model already in leaderboard"
|
| 152 |
+
try:
|
| 153 |
+
stats = get_tokenizer_stats(model_id, PREDEFINED_TEXT)
|
| 154 |
+
new_row = pd.DataFrame([{
|
| 155 |
+
"Model ID": model_id,
|
| 156 |
+
"Token Count": stats["token_count"],
|
| 157 |
+
"Vocab Size": stats["vocab_size"],
|
| 158 |
+
"Tokens/Word": stats["token_word_ratio"],
|
| 159 |
+
"Chars/Token": stats["chars_per_token"],
|
| 160 |
+
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 161 |
+
}])
|
| 162 |
+
updated_df = pd.concat([df, new_row], ignore_index=True)
|
| 163 |
+
push_leaderboard_to_hub(updated_df)
|
| 164 |
+
return "✅ Added to leaderboard!"
|
| 165 |
+
except Exception as e:
|
| 166 |
+
return f"❌ Error: {str(e)}"
|
| 167 |
+
|
| 168 |
+
def analyze_tokenizer(model_id, text):
|
| 169 |
+
if not model_id:
|
| 170 |
+
return "❌ Error: Please select or enter a model ID"
|
| 171 |
+
try:
|
| 172 |
+
stats = get_tokenizer_stats(model_id, text)
|
| 173 |
+
return (
|
| 174 |
+
f"Token Count: {stats['token_count']}\n"
|
| 175 |
+
f"Vocab Size: {stats['vocab_size']}\n"
|
| 176 |
+
f"Tokens/Word: {stats['token_word_ratio']:.2f}\n"
|
| 177 |
+
f"Chars/Token: {stats['chars_per_token']:.2f}"
|
| 178 |
+
)
|
| 179 |
+
except Exception as e:
|
| 180 |
+
return f"❌ Analysis Failed: {str(e)}"
|
| 181 |
+
|
| 182 |
+
def compare_tokenizers(model_ids_str, use_standard_text):
|
| 183 |
+
try:
|
| 184 |
+
model_list = [mid.strip() for mid in model_ids_str.split(',') if mid.strip()]
|
| 185 |
+
if not model_list:
|
| 186 |
+
return pd.DataFrame({"Error": ["No models provided"]})
|
| 187 |
+
results = []
|
| 188 |
+
for model_id in model_list:
|
| 189 |
+
try:
|
| 190 |
+
stats = get_tokenizer_stats(model_id, PREDEFINED_TEXT)
|
| 191 |
+
results.append({
|
| 192 |
+
"Model ID": model_id,
|
| 193 |
+
"Tokens": stats["token_count"],
|
| 194 |
+
"Vocab Size": stats["vocab_size"],
|
| 195 |
+
"Tokens/Word": f"{stats['token_word_ratio']:.2f}",
|
| 196 |
+
"Chars/Token": f"{stats['chars_per_token']:.2f}",
|
| 197 |
+
"Status": "✅ Success"
|
| 198 |
+
})
|
| 199 |
+
except Exception as e:
|
| 200 |
+
results.append({
|
| 201 |
+
"Model ID": model_id,
|
| 202 |
+
"Tokens": "-",
|
| 203 |
+
"Vocab Size": "-",
|
| 204 |
+
"Tokens/Word": "-",
|
| 205 |
+
"Chars/Token": "-",
|
| 206 |
+
"Status": f"❌ {str(e)}"
|
| 207 |
+
})
|
| 208 |
+
return pd.DataFrame(results)
|
| 209 |
+
except Exception as e:
|
| 210 |
+
return pd.DataFrame({"Error": [str(e)]})
|
| 211 |
+
|
| 212 |
+
def get_leaderboard_for_download():
|
| 213 |
+
"""Loads, prepares, and returns a Gradio File object for download."""
|
| 214 |
+
try:
|
| 215 |
+
df = load_leaderboard_from_hub()
|
| 216 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmpfile:
|
| 217 |
+
df.to_csv(tmpfile.name, index=False)
|
| 218 |
+
# Return a Gradio File object, NOT just the path
|
| 219 |
+
return gr.File(value=tmpfile.name, label="Download CSV")
|
| 220 |
+
except Exception as e:
|
| 221 |
+
print(f"Error preparing file for download: {e}")
|
| 222 |
+
return None
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def initial_benchmark_run():
|
| 226 |
+
try:
|
| 227 |
+
print("Starting initial benchmark run...")
|
| 228 |
+
default_models = [
|
| 229 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
| 230 |
+
"Qwen/Qwen2.5-7B-Instruct-1M",
|
| 231 |
+
"simplescaling/s1.1-32B",
|
| 232 |
+
"Xenova/gpt-4o",
|
| 233 |
+
"microsoft/phi-4",
|
| 234 |
+
"deepseek-ai/DeepSeek-R1",
|
| 235 |
+
"google/gemma-2-27b-it",
|
| 236 |
+
"HuggingFaceTB/SmolLM2-135M-Instruct",
|
| 237 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 238 |
+
"tomg-group-umd/huginn-0125",
|
| 239 |
+
"microsoft/Phi-3.5-mini-instruct",
|
| 240 |
+
"openai-community/gpt2"
|
| 241 |
+
]
|
| 242 |
+
df = load_leaderboard_from_hub()
|
| 243 |
+
for model_id in default_models:
|
| 244 |
+
try:
|
| 245 |
+
if not is_model_in_leaderboard(df, model_id):
|
| 246 |
+
print(f"Benchmarking {model_id}...")
|
| 247 |
+
result = add_to_leaderboard(model_id)
|
| 248 |
+
print(f"Result for {model_id}: {result}")
|
| 249 |
+
else:
|
| 250 |
+
print(f"{model_id} already in leaderboard, skipping.")
|
| 251 |
+
except Exception as e:
|
| 252 |
+
print(f"Error benchmarking {model_id}: {str(e)}")
|
| 253 |
+
print("Initial benchmarking complete.")
|
| 254 |
+
except Exception as e:
|
| 255 |
+
print(f"Fatal error in initial benchmark: {str(e)}")
|
| 256 |
+
|
| 257 |
+
# --- Gradio Interface ---
|
| 258 |
+
with gr.Blocks(title="Tokenizers Leaderboard", theme=gr.themes.Soft()) as iface:
|
| 259 |
+
gr.Markdown("# 🏆 Tokenizers Leaderboard")
|
| 260 |
+
|
| 261 |
+
with gr.Tab("Analyze"):
|
| 262 |
+
gr.Markdown("## Single Tokenizer Analysis")
|
| 263 |
+
with gr.Row():
|
| 264 |
+
model_search = HuggingfaceHubSearch(label="Search Models", placeholder="Search Hugging Face models...", search_type="model")
|
| 265 |
+
custom_model = gr.Textbox(label="Direct Model ID", placeholder="e.g.: mistralai/Mistral-7B-Instruct-v0.3", max_lines=1)
|
| 266 |
+
model_id = gr.Textbox(visible=False)
|
| 267 |
+
gr.Markdown("### Input Text")
|
| 268 |
+
text_input = gr.Textbox(lines=5, value=PREDEFINED_TEXT, label="Analysis Text")
|
| 269 |
+
with gr.Row():
|
| 270 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
| 271 |
+
add_btn = gr.Button("Add to Leaderboard")
|
| 272 |
+
analysis_output = gr.Textbox(label="Results", interactive=False)
|
| 273 |
+
model_search.change(lambda x: x, model_search, model_id)
|
| 274 |
+
custom_model.change(lambda x: x, custom_model, model_id)
|
| 275 |
+
analyze_btn.click(analyze_tokenizer, [model_id, text_input], analysis_output)
|
| 276 |
+
add_event = add_btn.click(add_to_leaderboard, model_id, analysis_output)
|
| 277 |
+
|
| 278 |
+
with gr.Tab("Compare"):
|
| 279 |
+
gr.Markdown("## Multi-Model Comparison")
|
| 280 |
+
gr.Markdown(f"**Standard Text:** `{PREDEFINED_TEXT[:80]}...`")
|
| 281 |
+
model_ids = gr.Textbox(label="Model IDs (comma-separated)", placeholder="Enter models: meta-llama/Llama-2-7b, google/gemma-7b, ...")
|
| 282 |
+
compare_btn = gr.Button("Compare Models", variant="primary")
|
| 283 |
+
comparison_table = gr.DataFrame(label="Results", interactive=False)
|
| 284 |
+
compare_btn.click(compare_tokenizers, [model_ids, gr.Checkbox(value=True, visible=False)], comparison_table)
|
| 285 |
+
|
| 286 |
+
with gr.Tab("Leaderboard"):
|
| 287 |
+
gr.Markdown("## Performance Leaderboard")
|
| 288 |
+
with gr.Row():
|
| 289 |
+
download_btn = gr.DownloadButton(label="Download CSV", value="tokenizer_leaderboard.csv")
|
| 290 |
+
leaderboard_table = gr.DataFrame(label="Top Tokenizers", headers=LEADERBOARD_COLUMNS, interactive=False,
|
| 291 |
+
datatype=["str", "number", "number", "number", "number", "str"])
|
| 292 |
+
|
| 293 |
+
# Connect the download button to the function that prepares the CSV
|
| 294 |
+
download_btn.click(get_leaderboard_for_download, inputs=[], outputs=download_btn)
|
| 295 |
+
|
| 296 |
+
iface.load(fn=load_leaderboard_from_hub, outputs=leaderboard_table)
|
| 297 |
+
add_event.then(load_leaderboard_from_hub, None, leaderboard_table)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
create_huggingface_dataset()
|
| 301 |
+
initial_benchmark_run()
|
| 302 |
+
iface.launch()
|
| 303 |
+
'''
|
| 304 |
+
|
| 305 |
+
WORD_COUNT = len(re.findall(r'\S+', PREDEFINED_TEXT))
|
| 306 |
+
LEADERBOARD_COLUMNS = [
|
| 307 |
+
"Model ID", "Token Count", "Vocab Size",
|
| 308 |
+
"Tokens/Word", "Chars/Token", "Timestamp"
|
| 309 |
+
]
|
| 310 |
+
|
| 311 |
+
# --- Hugging Face Hub Functions ---
|
| 312 |
+
def create_huggingface_dataset():
|
| 313 |
+
"""Creates the dataset repository on the Hub if it doesn't exist."""
|
| 314 |
+
try:
|
| 315 |
+
api = HfApi(token=HF_TOKEN)
|
| 316 |
+
create_repo(repo_id=DATASET_REPO_ID, token=HF_TOKEN, repo_type="dataset", exist_ok=True)
|
| 317 |
+
|
| 318 |
+
card_data = DatasetCardData(
|
| 319 |
+
language="en",
|
| 320 |
+
license="mit",
|
| 321 |
+
size_categories=["1K<n<10K"],
|
| 322 |
+
tags=["tokenizer", "leaderboard", "performance", "gradio"],
|
| 323 |
+
)
|
| 324 |
+
card = DatasetCard.from_template(
|
| 325 |
+
card_data,
|
| 326 |
+
template_path=None,
|
| 327 |
+
Title="Tokenizer Leaderboard",
|
| 328 |
+
Description="A leaderboard of tokenizer performance based on various metrics.",
|
| 329 |
+
How_to_use="The leaderboard data is stored in a CSV file named 'leaderboard.csv'.",
|
| 330 |
+
)
|
| 331 |
+
card.push_to_hub(repo_id=DATASET_REPO_ID, token=HF_TOKEN)
|
| 332 |
+
print(f"Dataset repository '{DATASET_REPO_ID}' created (or already exists).")
|
| 333 |
+
|
| 334 |
+
except Exception as e:
|
| 335 |
+
print(f"Error creating dataset repository: {e}")
|
| 336 |
+
raise
|
| 337 |
+
|
| 338 |
+
def load_leaderboard_from_hub():
|
| 339 |
+
"""Loads the leaderboard data from the Hugging Face Hub as a pandas DataFrame."""
|
| 340 |
+
try:
|
| 341 |
+
api = HfApi(token=HF_TOKEN)
|
| 342 |
+
dataset_path = api.dataset_info(repo_id=DATASET_REPO_ID, token=HF_TOKEN).siblings
|
| 343 |
+
csv_file_info = next((file for file in dataset_path if file.rfilename == DATASET_FILE_NAME), None)
|
| 344 |
+
|
| 345 |
+
if csv_file_info is None:
|
| 346 |
+
print(f"'{DATASET_FILE_NAME}' not found in '{DATASET_REPO_ID}'. Returning an empty DataFrame")
|
| 347 |
+
return pd.DataFrame(columns=LEADERBOARD_COLUMNS)
|
| 348 |
+
|
| 349 |
+
file_path = api.hf_hub_download(repo_id=DATASET_REPO_ID, filename=DATASET_FILE_NAME, repo_type="dataset")
|
| 350 |
+
df = pd.read_csv(file_path)
|
| 351 |
+
df = df.sort_values(by="Token Count", ascending=True)
|
| 352 |
+
df["Tokens/Word"] = df["Tokens/Word"].round(2)
|
| 353 |
+
df["Chars/Token"] = df["Chars/Token"].round(2)
|
| 354 |
+
return df
|
| 355 |
+
|
| 356 |
+
except Exception as e:
|
| 357 |
+
print(f"Error loading leaderboard from Hugging Face Hub: {e}")
|
| 358 |
+
return pd.DataFrame(columns=LEADERBOARD_COLUMNS)
|
| 359 |
+
|
| 360 |
+
def push_leaderboard_to_hub(df):
|
| 361 |
+
"""Pushes the updated leaderboard DataFrame to the Hugging Face Hub."""
|
| 362 |
+
try:
|
| 363 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".csv") as tmpfile:
|
| 364 |
+
df.to_csv(tmpfile.name, index=False)
|
| 365 |
+
tmp_path = tmpfile.name
|
| 366 |
+
|
| 367 |
+
api = HfApi(token=HF_TOKEN)
|
| 368 |
+
api.upload_file(
|
| 369 |
+
path_or_fileobj=tmp_path,
|
| 370 |
+
path_in_repo=DATASET_FILE_NAME,
|
| 371 |
+
repo_id=DATASET_REPO_ID,
|
| 372 |
+
repo_type="dataset",
|
| 373 |
+
token=HF_TOKEN,
|
| 374 |
+
commit_message="Update leaderboard"
|
| 375 |
+
)
|
| 376 |
+
os.remove(tmp_path)
|
| 377 |
+
|
| 378 |
+
print(f"Leaderboard updated and pushed to {DATASET_REPO_ID}")
|
| 379 |
+
|
| 380 |
+
except Exception as e:
|
| 381 |
+
print(f"Error pushing leaderboard to Hugging Face Hub: {e}")
|
| 382 |
+
raise
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
# --- Utility Functions ---
|
| 386 |
+
|
| 387 |
+
def get_tokenizer_stats(model_id, text):
|
| 388 |
+
if not model_id:
|
| 389 |
+
raise ValueError("No model ID provided")
|
| 390 |
+
try:
|
| 391 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN, trust_remote_code=True)
|
| 392 |
+
tokens = tokenizer.encode(text, add_special_tokens=False)
|
| 393 |
+
text_length = len(text)
|
| 394 |
+
return {
|
| 395 |
+
"token_count": len(tokens),
|
| 396 |
+
"vocab_size": tokenizer.vocab_size,
|
| 397 |
+
"token_word_ratio": round(len(tokens) / WORD_COUNT, 2),
|
| 398 |
+
"chars_per_token": round(text_length / len(tokens), 2) if tokens else 0
|
| 399 |
+
}
|
| 400 |
+
except Exception as e:
|
| 401 |
+
raise RuntimeError(f"Failed to load tokenizer or encode text: {str(e)}") from e
|
| 402 |
+
|
| 403 |
+
def is_model_in_leaderboard(df, model_id):
|
| 404 |
+
return model_id in df["Model ID"].values
|
| 405 |
+
|
| 406 |
+
def add_to_leaderboard(model_id):
|
| 407 |
+
if not model_id:
|
| 408 |
+
return "❌ Error: No model ID provided"
|
| 409 |
+
df = load_leaderboard_from_hub()
|
| 410 |
+
if is_model_in_leaderboard(df, model_id):
|
| 411 |
+
return "⚠️ Model already in leaderboard"
|
| 412 |
+
try:
|
| 413 |
+
stats = get_tokenizer_stats(model_id, PREDEFINED_TEXT)
|
| 414 |
+
new_row = pd.DataFrame([{
|
| 415 |
+
"Model ID": model_id,
|
| 416 |
+
"Token Count": stats["token_count"],
|
| 417 |
+
"Vocab Size": stats["vocab_size"],
|
| 418 |
+
"Tokens/Word": stats["token_word_ratio"],
|
| 419 |
+
"Chars/Token": stats["chars_per_token"],
|
| 420 |
+
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 421 |
+
}])
|
| 422 |
+
updated_df = pd.concat([df, new_row], ignore_index=True)
|
| 423 |
+
push_leaderboard_to_hub(updated_df)
|
| 424 |
+
return "✅ Added to leaderboard!"
|
| 425 |
+
except Exception as e:
|
| 426 |
+
return f"❌ Error: {str(e)}"
|
| 427 |
+
|
| 428 |
+
def analyze_tokenizer(model_id, text):
|
| 429 |
+
if not model_id:
|
| 430 |
+
return "❌ Error: Please select or enter a model ID"
|
| 431 |
+
try:
|
| 432 |
+
stats = get_tokenizer_stats(model_id, text)
|
| 433 |
+
return (
|
| 434 |
+
f"Token Count: {stats['token_count']}\n"
|
| 435 |
+
f"Vocab Size: {stats['vocab_size']}\n"
|
| 436 |
+
f"Tokens/Word: {stats['token_word_ratio']:.2f}\n"
|
| 437 |
+
f"Chars/Token: {stats['chars_per_token']:.2f}"
|
| 438 |
+
)
|
| 439 |
+
except Exception as e:
|
| 440 |
+
return f"❌ Analysis Failed: {str(e)}"
|
| 441 |
+
|
| 442 |
+
def compare_tokenizers(model_ids_str, use_standard_text):
|
| 443 |
+
try:
|
| 444 |
+
model_list = [mid.strip() for mid in model_ids_str.split(',') if mid.strip()]
|
| 445 |
+
if not model_list:
|
| 446 |
+
return pd.DataFrame({"Error": ["No models provided"]})
|
| 447 |
+
results = []
|
| 448 |
+
for model_id in model_list:
|
| 449 |
+
try:
|
| 450 |
+
stats = get_tokenizer_stats(model_id, PREDEFINED_TEXT)
|
| 451 |
+
results.append({
|
| 452 |
+
"Model ID": model_id,
|
| 453 |
+
"Tokens": stats["token_count"],
|
| 454 |
+
"Vocab Size": stats["vocab_size"],
|
| 455 |
+
"Tokens/Word": f"{stats['token_word_ratio']:.2f}",
|
| 456 |
+
"Chars/Token": f"{stats['chars_per_token']:.2f}",
|
| 457 |
+
"Status": "✅ Success"
|
| 458 |
+
})
|
| 459 |
+
except Exception as e:
|
| 460 |
+
results.append({
|
| 461 |
+
"Model ID": model_id,
|
| 462 |
+
"Tokens": "-",
|
| 463 |
+
"Vocab Size": "-",
|
| 464 |
+
"Tokens/Word": "-",
|
| 465 |
+
"Chars/Token": "-",
|
| 466 |
+
"Status": f"❌ {str(e)}"
|
| 467 |
+
})
|
| 468 |
+
return pd.DataFrame(results)
|
| 469 |
+
except Exception as e:
|
| 470 |
+
return pd.DataFrame({"Error": [str(e)]})
|
| 471 |
+
|
| 472 |
+
def get_leaderboard_for_download():
|
| 473 |
+
"""Loads, prepares, and returns a Gradio File object for download."""
|
| 474 |
+
try:
|
| 475 |
+
df = load_leaderboard_from_hub()
|
| 476 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmpfile:
|
| 477 |
+
df.to_csv(tmpfile.name, index=False)
|
| 478 |
+
# Return a Gradio File object, NOT just the path
|
| 479 |
+
return gr.File(value=tmpfile.name, label="Download CSV")
|
| 480 |
+
except Exception as e:
|
| 481 |
+
print(f"Error preparing file for download: {e}")
|
| 482 |
+
return None
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
def initial_benchmark_run():
|
| 486 |
+
try:
|
| 487 |
+
print("Starting initial benchmark run...")
|
| 488 |
+
default_models = [
|
| 489 |
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
|
| 490 |
+
"Qwen/Qwen2.5-7B-Instruct-1M",
|
| 491 |
+
"simplescaling/s1.1-32B",
|
| 492 |
+
"Xenova/gpt-4o",
|
| 493 |
+
"microsoft/phi-4",
|
| 494 |
+
"deepseek-ai/DeepSeek-R1",
|
| 495 |
+
"google/gemma-2-27b-it",
|
| 496 |
+
"HuggingFaceTB/SmolLM2-135M-Instruct",
|
| 497 |
+
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 498 |
+
"tomg-group-umd/huginn-0125",
|
| 499 |
+
"microsoft/Phi-3.5-mini-instruct",
|
| 500 |
+
"openai-community/gpt2"
|
| 501 |
+
]
|
| 502 |
+
df = load_leaderboard_from_hub()
|
| 503 |
+
for model_id in default_models:
|
| 504 |
+
try:
|
| 505 |
+
if not is_model_in_leaderboard(df, model_id):
|
| 506 |
+
print(f"Benchmarking {model_id}...")
|
| 507 |
+
result = add_to_leaderboard(model_id)
|
| 508 |
+
print(f"Result for {model_id}: {result}")
|
| 509 |
+
else:
|
| 510 |
+
print(f"{model_id} already in leaderboard, skipping.")
|
| 511 |
+
except Exception as e:
|
| 512 |
+
print(f"Error benchmarking {model_id}: {str(e)}")
|
| 513 |
+
print("Initial benchmarking complete.")
|
| 514 |
+
except Exception as e:
|
| 515 |
+
print(f"Fatal error in initial benchmark: {str(e)}")
|
| 516 |
+
|
| 517 |
+
# --- Gradio Interface ---
|
| 518 |
+
with gr.Blocks(title="Tokenizers Leaderboard", theme=gr.themes.Soft()) as iface:
|
| 519 |
+
gr.Markdown("# 🏆 Tokenizers Leaderboard")
|
| 520 |
+
|
| 521 |
+
with gr.Tab("Analyze"):
|
| 522 |
+
gr.Markdown("## Single Tokenizer Analysis")
|
| 523 |
+
with gr.Row():
|
| 524 |
+
model_search = HuggingfaceHubSearch(label="Search Models", placeholder="Search Hugging Face models...", search_type="model")
|
| 525 |
+
custom_model = gr.Textbox(label="Direct Model ID", placeholder="e.g.: mistralai/Mistral-7B-Instruct-v0.3", max_lines=1)
|
| 526 |
+
model_id = gr.Textbox(visible=False)
|
| 527 |
+
gr.Markdown("### Input Text")
|
| 528 |
+
text_input = gr.Textbox(lines=5, value=PREDEFINED_TEXT, label="Analysis Text")
|
| 529 |
+
with gr.Row():
|
| 530 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
| 531 |
+
add_btn = gr.Button("Add to Leaderboard")
|
| 532 |
+
analysis_output = gr.Textbox(label="Results", interactive=False)
|
| 533 |
+
model_search.change(lambda x: x, model_search, model_id)
|
| 534 |
+
custom_model.change(lambda x: x, custom_model, model_id)
|
| 535 |
+
analyze_btn.click(analyze_tokenizer, [model_id, text_input], analysis_output)
|
| 536 |
+
add_event = add_btn.click(add_to_leaderboard, model_id, analysis_output)
|
| 537 |
+
|
| 538 |
+
with gr.Tab("Compare"):
|
| 539 |
+
gr.Markdown("## Multi-Model Comparison")
|
| 540 |
+
gr.Markdown(f"**Standard Text:** `{PREDEFINED_TEXT[:80]}...`")
|
| 541 |
+
model_ids = gr.Textbox(label="Model IDs (comma-separated)", placeholder="Enter models: meta-llama/Llama-2-7b, google/gemma-7b, ...")
|
| 542 |
+
compare_btn = gr.Button("Compare Models", variant="primary")
|
| 543 |
+
comparison_table = gr.DataFrame(label="Results", interactive=False)
|
| 544 |
+
compare_btn.click(compare_tokenizers, [model_ids, gr.Checkbox(value=True, visible=False)], comparison_table)
|
| 545 |
+
|
| 546 |
+
with gr.Tab("Leaderboard"):
|
| 547 |
+
gr.Markdown("## Performance Leaderboard")
|
| 548 |
+
with gr.Row():
|
| 549 |
+
download_btn = gr.DownloadButton(label="Download CSV", value="tokenizer_leaderboard.csv")
|
| 550 |
+
leaderboard_table = gr.DataFrame(label="Top Tokenizers", headers=LEADERBOARD_COLUMNS, interactive=False,
|
| 551 |
+
datatype=["str", "number", "number", "number", "number", "str"])
|
| 552 |
+
|
| 553 |
+
# Connect the download button to the function that prepares the CSV
|
| 554 |
+
download_btn.click(get_leaderboard_for_download, inputs=[], outputs=download_btn)
|
| 555 |
+
|
| 556 |
+
iface.load(fn=load_leaderboard_from_hub, outputs=leaderboard_table)
|
| 557 |
+
add_event.then(load_leaderboard_from_hub, None, leaderboard_table)
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
create_huggingface_dataset()
|
| 561 |
+
initial_benchmark_run()
|
| 562 |
+
iface.launch()
|