Lum4yx commited on
Commit
ae9ed1e
·
verified ·
1 Parent(s): 476d8d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -15
app.py CHANGED
@@ -1,34 +1,125 @@
1
  import gradio as gr
2
  from textblob import TextBlob
 
 
 
 
 
3
 
4
- def sentiment_analysis(text: str) -> dict:
5
- """
6
- Analyze the sentiment of the given text.
7
 
8
- Args:
9
- text (str): The text to analyze
10
 
11
- Returns:
12
- dict: A dictionary containing polarity, subjectivity, and assessment
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  """
14
  blob = TextBlob(text)
15
  sentiment = blob.sentiment
16
 
17
  return {
18
- "polarity": round(sentiment.polarity, 2), # -1 (negative) to 1 (positive)
19
- "subjectivity": round(sentiment.subjectivity, 2), # 0 (objective) to 1 (subjective)
 
20
  "assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
21
  }
22
 
23
- # Create the Gradio interface
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  demo = gr.Interface(
25
- fn=sentiment_analysis,
26
- inputs=gr.Textbox(placeholder="Enter text to analyze..."),
27
- outputs=gr.JSON(),
28
- title="Text Sentiment Analysis",
29
- description="Analyze the sentiment of text using TextBlob"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  )
31
 
32
  # Launch the interface and MCP server
33
  if __name__ == "__main__":
 
 
 
34
  demo.launch(mcp_server=True)
 
 
1
  import gradio as gr
2
  from textblob import TextBlob
3
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
4
+ import torch
5
+ import base64
6
+ import numpy as np
7
+ import ffmpeg
8
 
9
+ # 1. Set up device and data type for optimized performance
10
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
12
 
13
+ # 2. Define the model ID for the large Whisper model
14
+ model_id = "openai/whisper-large-v3-turbo"
15
 
16
+ # 3. Load the model from pretrained weights
17
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
18
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
19
+ )
20
+ model.to(device)
21
+
22
+ # 4. Load the processor which includes the feature extractor and tokenizer
23
+ processor = AutoProcessor.from_pretrained(model_id)
24
+
25
+ # 5. Create the ASR pipeline with the loaded components
26
+ pipe = pipeline(
27
+ "automatic-speech-recognition",
28
+ model=model,
29
+ tokenizer=processor.tokenizer,
30
+ feature_extractor=processor.feature_extractor,
31
+ max_new_tokens=128,
32
+ torch_dtype=torch_dtype,
33
+ device=device,
34
+ )
35
+
36
+ def sentiment_analysis(text: str) -> dict:
37
+ """
38
+ Analyze the sentiment of the given text. (This function is unchanged)
39
  """
40
  blob = TextBlob(text)
41
  sentiment = blob.sentiment
42
 
43
  return {
44
+ "transcript": text,
45
+ "polarity": round(sentiment.polarity, 2),
46
+ "subjectivity": round(sentiment.subjectivity, 2),
47
  "assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
48
  }
49
 
50
+ def process_base64_audio(base64_data_uri: str) -> dict:
51
+ """
52
+ Decodes a Base64 audio data URI, processes it in-memory,
53
+ transcribes it using a Hugging Face Whisper pipeline, and then analyzes its sentiment.
54
+
55
+ Args:
56
+ base64_data_uri (str): A string in data URI format (e.g., "data:audio/wav;base64,UklGRi...").
57
+
58
+ Returns:
59
+ dict: The sentiment analysis result or an error message.
60
+ """
61
+ if not base64_data_uri or "base64," not in base64_data_uri:
62
+ return {"error": "Invalid or empty Base64 data URI provided."}
63
+
64
+ try:
65
+ # Parse the data URI to extract the Base64 encoded data
66
+ _, encoded_data = base64_data_uri.split(',', 1)
67
+
68
+ # Decode the Base64 string into binary audio data
69
+ audio_data = base64.b64decode(encoded_data)
70
+
71
+ # Use ffmpeg to convert the in-memory audio data to a raw PCM buffer.
72
+ # The pipeline expects a 16kHz mono audio stream.
73
+ out, _ = (
74
+ ffmpeg
75
+ .input('pipe:0')
76
+ .output('pipe:1', format='s16le', ac=1, ar=16000)
77
+ .run(input=audio_data, capture_stdout=True, capture_stderr=True)
78
+ )
79
+
80
+ # Convert the raw PCM buffer to a NumPy array of 32-bit floats.
81
+ audio_np = np.frombuffer(out, np.int16).astype(np.float32) / 32768.0
82
+
83
+ # Transcribe the audio from the NumPy array using the HF pipeline
84
+ transcription_result = pipe(audio_np)
85
+ transcript_text = transcription_result["text"]
86
+
87
+ except Exception as e:
88
+ # Capture potential errors from ffmpeg or the model
89
+ return {"error": f"Failed to process audio: {str(e)}"}
90
+
91
+ # Perform sentiment analysis on the transcribed text
92
+ return sentiment_analysis(transcript_text)
93
+
94
+
95
+ # Create the Gradio interface with the Hugging Face theme
96
  demo = gr.Interface(
97
+ fn=process_base64_audio,
98
+ # The input remains a Textbox to accept the raw Base64 string from the API client
99
+ inputs=gr.Textbox(lines=5, placeholder="Paste your Base64 encoded audio data URI here...", label="Base64 Audio Input"),
100
+ outputs=gr.JSON(label="Analysis Result"),
101
+ title="🎙️ Audio Sentiment Analysis (Whisper Large v3)",
102
+ description="""
103
+ Analyze the sentiment of spoken words.
104
+ This tool accepts a **Base64 encoded audio data URI**, transcribes the audio in-memory using the `openai/whisper-large-v3` model,
105
+ and performs sentiment analysis on the text with TextBlob.
106
+ """,
107
+ examples=[
108
+ ["data:audio/wav;base64,UklGRiQ...<placeholder_for_a_short_positive_clip>"],
109
+ ["data:audio/wav;base64,UklGRiQ...<placeholder_for_a_short_negative_clip>"]
110
+ ],
111
+ article="""
112
+ ### How to get a Base64 Audio URI?
113
+ You can use an online converter or a script (like the provided `test_client.py`) to convert a short audio file (e.g., .wav or .mp3) into a Base64 data URI.
114
+ The format must be `data:audio/[format];base64,[encoded_string]`.
115
+ """,
116
+ theme='huggingface' # This applies the new theme
117
  )
118
 
119
  # Launch the interface and MCP server
120
  if __name__ == "__main__":
121
+ # You will need to have ffmpeg installed on your system for this to work.
122
+ # You also need to install the required python packages. This model is large and requires significant resources.
123
+ # pip install gradio textblob "transformers[torch]" accelerate safetensors ffmpeg-python numpy
124
  demo.launch(mcp_server=True)
125
+