Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,11 +2,9 @@ import gradio as gr
|
|
| 2 |
from textblob import TextBlob
|
| 3 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 4 |
import torch
|
| 5 |
-
import base64
|
| 6 |
import numpy as np
|
| 7 |
-
import ffmpeg
|
| 8 |
import os
|
| 9 |
-
import glob
|
| 10 |
|
| 11 |
# 1. Set up device and data type for optimized performance
|
| 12 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
@@ -41,7 +39,6 @@ def sentiment_analysis(text: str) -> dict:
|
|
| 41 |
"""
|
| 42 |
blob = TextBlob(text)
|
| 43 |
sentiment = blob.sentiment
|
| 44 |
-
|
| 45 |
return {
|
| 46 |
"transcript": text,
|
| 47 |
"polarity": round(sentiment.polarity, 2),
|
|
@@ -49,66 +46,35 @@ def sentiment_analysis(text: str) -> dict:
|
|
| 49 |
"assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
|
| 50 |
}
|
| 51 |
|
| 52 |
-
|
|
|
|
| 53 |
"""
|
| 54 |
-
Processes
|
|
|
|
| 55 |
"""
|
| 56 |
-
if
|
| 57 |
-
return {"error": "
|
| 58 |
-
|
| 59 |
-
try:
|
| 60 |
-
out, _ = (
|
| 61 |
-
ffmpeg
|
| 62 |
-
.input(audio_path)
|
| 63 |
-
.output('pipe:1', format='s16le', ac=1, ar=16000)
|
| 64 |
-
.run(capture_stdout=True, capture_stderr=True)
|
| 65 |
-
)
|
| 66 |
-
audio_np = np.frombuffer(out, np.int16).astype(np.float32) / 32768.0
|
| 67 |
-
transcription_result = pipe(audio_np)
|
| 68 |
-
transcript_text = transcription_result["text"]
|
| 69 |
-
except Exception as e:
|
| 70 |
-
return {"error": f"Failed to process audio file: {str(e)}"}
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
"""
|
| 78 |
-
if not isinstance(base64_data_uri, str) or "base64," not in base64_data_uri:
|
| 79 |
-
return {"error": "Invalid or empty Base64 data URI provided."}
|
| 80 |
|
| 81 |
try:
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
)
|
| 90 |
-
audio_np = np.frombuffer(out, np.int16).astype(np.float32) / 32768.0
|
| 91 |
-
transcription_result = pipe(audio_np)
|
| 92 |
-
transcript_text = transcription_result["text"]
|
| 93 |
except Exception as e:
|
| 94 |
-
return {"error": f"Failed to
|
| 95 |
|
|
|
|
| 96 |
return sentiment_analysis(transcript_text)
|
| 97 |
|
| 98 |
-
def analyze_audio_input(audio_input: str) -> dict:
|
| 99 |
-
"""
|
| 100 |
-
Router function to handle both file paths and Base64 strings.
|
| 101 |
-
This allows the Gradio UI to use file uploads and the API to use Base64.
|
| 102 |
-
"""
|
| 103 |
-
# Check if the input is a valid file path provided by the Gradio component
|
| 104 |
-
if audio_input and os.path.exists(audio_input):
|
| 105 |
-
return process_audio(audio_input)
|
| 106 |
-
# Otherwise, assume it's a Base64 string from an API call
|
| 107 |
-
elif isinstance(audio_input, str):
|
| 108 |
-
return process_base64_audio(audio_input)
|
| 109 |
-
else:
|
| 110 |
-
return {"error": f"Invalid input type: {type(audio_input)}"}
|
| 111 |
-
|
| 112 |
|
| 113 |
# --- Code to find and load examples ---
|
| 114 |
examples_dir = "examples"
|
|
@@ -127,26 +93,21 @@ examples_list = [[file] for file in example_files]
|
|
| 127 |
|
| 128 |
# Create the Gradio interface
|
| 129 |
demo = gr.Interface(
|
| 130 |
-
fn=
|
| 131 |
-
inputs=gr.Audio(type="
|
| 132 |
outputs=gr.JSON(label="Analysis Result"),
|
| 133 |
title="🎙️ Audio Sentiment Analysis (Whisper Small)",
|
| 134 |
-
description=""
|
| 135 |
-
Analyze the sentiment of spoken words.
|
| 136 |
-
**UI**: Upload an audio file, record directly, or click an example.
|
| 137 |
-
**API**: The endpoint also accepts a Base64 encoded audio data URI as input.
|
| 138 |
-
""",
|
| 139 |
examples=examples_list,
|
| 140 |
article="""
|
| 141 |
### How it Works
|
| 142 |
-
This tool uses
|
| 143 |
-
|
|
|
|
| 144 |
""",
|
| 145 |
theme='huggingface'
|
| 146 |
)
|
| 147 |
|
| 148 |
-
# Launch the interface
|
| 149 |
if __name__ == "__main__":
|
| 150 |
-
# Ensure ffmpeg is installed on your system.
|
| 151 |
-
# pip install gradio textblob "transformers[torch]" accelerate safetensors ffmpeg-python numpy
|
| 152 |
demo.launch(mcp_server=True)
|
|
|
|
| 2 |
from textblob import TextBlob
|
| 3 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 4 |
import torch
|
|
|
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
import os
|
| 7 |
+
import glob
|
| 8 |
|
| 9 |
# 1. Set up device and data type for optimized performance
|
| 10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 39 |
"""
|
| 40 |
blob = TextBlob(text)
|
| 41 |
sentiment = blob.sentiment
|
|
|
|
| 42 |
return {
|
| 43 |
"transcript": text,
|
| 44 |
"polarity": round(sentiment.polarity, 2),
|
|
|
|
| 46 |
"assessment": "positive" if sentiment.polarity > 0 else "negative" if sentiment.polarity < 0 else "neutral"
|
| 47 |
}
|
| 48 |
|
| 49 |
+
# NEW: Simplified main function to process audio from a NumPy array
|
| 50 |
+
def analyze_audio(audio: tuple) -> dict:
|
| 51 |
"""
|
| 52 |
+
Processes audio data from a NumPy array, transcribes it, and analyzes its sentiment.
|
| 53 |
+
Gradio provides the audio as a tuple (sample_rate, data).
|
| 54 |
"""
|
| 55 |
+
if audio is None:
|
| 56 |
+
return {"error": "No audio provided. Please upload, record, or select an example."}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Unpack the audio tuple
|
| 59 |
+
sample_rate, audio_data = audio
|
| 60 |
+
|
| 61 |
+
# Convert the audio data to the format the model expects (float32)
|
| 62 |
+
audio_float32 = audio_data.astype(np.float32) / 32768.0
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
try:
|
| 65 |
+
# Transcribe the audio
|
| 66 |
+
transcription_result = pipe(audio_float32)
|
| 67 |
+
transcript_text = transcription_result["text"].strip()
|
| 68 |
+
|
| 69 |
+
if not transcript_text:
|
| 70 |
+
return {"error": "Transcription failed or audio was silent."}
|
| 71 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
except Exception as e:
|
| 73 |
+
return {"error": f"Failed to transcribe audio: {str(e)}"}
|
| 74 |
|
| 75 |
+
# Perform sentiment analysis on the transcript
|
| 76 |
return sentiment_analysis(transcript_text)
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
# --- Code to find and load examples ---
|
| 80 |
examples_dir = "examples"
|
|
|
|
| 93 |
|
| 94 |
# Create the Gradio interface
|
| 95 |
demo = gr.Interface(
|
| 96 |
+
fn=analyze_audio, # CHANGED: Point to the new, simplified function
|
| 97 |
+
inputs=gr.Audio(type="numpy", label="Upload Audio File or Record"), # CHANGED: type="numpy"
|
| 98 |
outputs=gr.JSON(label="Analysis Result"),
|
| 99 |
title="🎙️ Audio Sentiment Analysis (Whisper Small)",
|
| 100 |
+
description="Analyze the sentiment of spoken words. Upload an audio file, record directly, or click an example below.",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
examples=examples_list,
|
| 102 |
article="""
|
| 103 |
### How it Works
|
| 104 |
+
This tool uses OpenAI's **Whisper Small** model to transcribe audio into text.
|
| 105 |
+
Then, **TextBlob** is used to perform sentiment analysis on the resulting transcript.
|
| 106 |
+
By using `type="numpy"`, the interface directly processes audio data, making it more reliable.
|
| 107 |
""",
|
| 108 |
theme='huggingface'
|
| 109 |
)
|
| 110 |
|
| 111 |
+
# Launch the interface
|
| 112 |
if __name__ == "__main__":
|
|
|
|
|
|
|
| 113 |
demo.launch(mcp_server=True)
|