Update app.py
Browse files
app.py
CHANGED
|
@@ -1,154 +1,139 @@
|
|
| 1 |
-
|
| 2 |
-
import numpy as np
|
| 3 |
-
import random
|
| 4 |
-
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
examples = [
|
| 55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 56 |
-
"An astronaut riding a green horse",
|
| 57 |
-
"A delicious ceviche cheesecake slice",
|
| 58 |
-
]
|
| 59 |
-
|
| 60 |
-
css = """
|
| 61 |
-
#col-container {
|
| 62 |
-
margin: 0 auto;
|
| 63 |
-
max-width: 640px;
|
| 64 |
}
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
guidance_scale = gr.Slider(
|
| 121 |
-
label="Guidance scale",
|
| 122 |
-
minimum=0.0,
|
| 123 |
-
maximum=10.0,
|
| 124 |
-
step=0.1,
|
| 125 |
-
value=0.0, # Replace with defaults that work for your model
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
num_inference_steps = gr.Slider(
|
| 129 |
-
label="Number of inference steps",
|
| 130 |
-
minimum=1,
|
| 131 |
-
maximum=50,
|
| 132 |
-
step=1,
|
| 133 |
-
value=2, # Replace with defaults that work for your model
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
| 137 |
-
gr.on(
|
| 138 |
-
triggers=[run_button.click, prompt.submit],
|
| 139 |
-
fn=infer,
|
| 140 |
-
inputs=[
|
| 141 |
prompt,
|
| 142 |
-
negative_prompt,
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import libraries
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 6 |
+
from diffusers import StableDiffusionPipeline
|
| 7 |
+
from IPython.display import display
|
| 8 |
+
|
| 9 |
+
### --- STEP 1: Load TinyLlama for Text Generation --- ###
|
| 10 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
| 13 |
+
|
| 14 |
+
# Initialize text generation pipeline
|
| 15 |
+
comic_pipeline = pipeline(
|
| 16 |
+
"text-generation",
|
| 17 |
+
model=model,
|
| 18 |
+
tokenizer=tokenizer
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
### --- STEP 2: Load Stable Diffusion XL for High-Quality Images --- ###
|
| 22 |
+
model_id = "stabilityai/sd-turbo" # Best for artistic comic style
|
| 23 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
|
| 24 |
+
pipe.to("cuda") # Move to GPU for better performance
|
| 25 |
+
|
| 26 |
+
### --- STEP 3: User Inputs a Prompt & Number of Panels --- ###
|
| 27 |
+
user_prompt = input("Enter a topic for the comic strip: ") # Example: "Government of India"
|
| 28 |
+
|
| 29 |
+
# Get number of panels from the user
|
| 30 |
+
while True:
|
| 31 |
+
try:
|
| 32 |
+
num_panels = int(input("Enter the number of comic panels (3 to 6): "))
|
| 33 |
+
if 3 <= num_panels <= 6:
|
| 34 |
+
break
|
| 35 |
+
else:
|
| 36 |
+
print("❌ Please enter a number between 3 and 6.")
|
| 37 |
+
except ValueError:
|
| 38 |
+
print("❌ Invalid input! Please enter a number between 3 and 6.")
|
| 39 |
+
|
| 40 |
+
### --- STEP 4: User Chooses an Art Style --- ###
|
| 41 |
+
art_styles = {
|
| 42 |
+
"1": "Classic Comic",
|
| 43 |
+
"2": "Anime",
|
| 44 |
+
"3": "Cartoon",
|
| 45 |
+
"4": "Noir",
|
| 46 |
+
"5": "Cyberpunk",
|
| 47 |
+
"6": "Watercolor"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
}
|
| 49 |
+
|
| 50 |
+
print("\n🎨 Choose an Art Style for the Comic:")
|
| 51 |
+
for key, style in art_styles.items():
|
| 52 |
+
print(f"{key}. {style}")
|
| 53 |
+
|
| 54 |
+
while True:
|
| 55 |
+
art_choice = input("\nEnter the number for your preferred art style: ")
|
| 56 |
+
if art_choice in art_styles:
|
| 57 |
+
chosen_style = art_styles[art_choice]
|
| 58 |
+
print(f"✅ You selected: {chosen_style}")
|
| 59 |
+
break
|
| 60 |
+
else:
|
| 61 |
+
print("❌ Invalid choice! Please enter a valid number.")
|
| 62 |
+
|
| 63 |
+
### --- STEP 5: Generate Comic-Style Breakdown Using TinyLlama --- ###
|
| 64 |
+
instruction = (
|
| 65 |
+
f"Generate a structured {num_panels}-panel comic strip description for the topic. "
|
| 66 |
+
"Each panel should have a simple but clear scene description. "
|
| 67 |
+
"Keep it short and focus on visuals for easy image generation.\n\n"
|
| 68 |
+
"Topic: " + user_prompt + "\n\n"
|
| 69 |
+
"Comic Strip Panels:\n"
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
response = comic_pipeline(
|
| 73 |
+
instruction,
|
| 74 |
+
max_new_tokens=400, # Ensure full response
|
| 75 |
+
temperature=0.7,
|
| 76 |
+
repetition_penalty=1.1,
|
| 77 |
+
do_sample=True
|
| 78 |
+
)[0]['generated_text']
|
| 79 |
+
|
| 80 |
+
# Extract only the structured comic description
|
| 81 |
+
comic_breakdown = response.replace(instruction, "").strip()
|
| 82 |
+
comic_panels = [line.strip() for line in comic_breakdown.split("\n") if line.strip()][:num_panels]
|
| 83 |
+
|
| 84 |
+
print("\n🔹 Comic Strip Breakdown:\n", "\n".join(comic_panels)) # Show generated panels
|
| 85 |
+
|
| 86 |
+
### --- STEP 6: Generate High-Quality Comic-Style Images --- ###
|
| 87 |
+
def generate_comic_image(description, style):
|
| 88 |
+
"""
|
| 89 |
+
Generates a comic panel image using Stable Diffusion Turbo.
|
| 90 |
+
"""
|
| 91 |
+
# Validate style input (fallback to "Comic" if invalid)
|
| 92 |
+
valid_styles = ["Comic", "Anime", "Cyberpunk", "Watercolor", "Pixel Art"]
|
| 93 |
+
chosen_style = style if style in valid_styles else "Comic"
|
| 94 |
+
|
| 95 |
+
# Refined prompt (shorter, SD-Turbo-friendly)
|
| 96 |
+
prompt = f"{description}, {chosen_style} style, bold outlines, vibrant colors, dynamic action."
|
| 97 |
+
|
| 98 |
+
# Negative prompt (avoiding unwanted elements)
|
| 99 |
+
negative_prompt = "blurry, distorted, text, watermark, low quality, extra limbs, messy background"
|
| 100 |
+
|
| 101 |
+
try:
|
| 102 |
+
# Generate image with optimized parameters
|
| 103 |
+
image = pipe(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
prompt,
|
| 105 |
+
negative_prompt=negative_prompt,
|
| 106 |
+
num_inference_steps=30, # Faster processing for SD-Turbo
|
| 107 |
+
guidance_scale=7
|
| 108 |
+
).images[0]
|
| 109 |
+
return image
|
| 110 |
+
except Exception as e:
|
| 111 |
+
print(f"❌ Error generating image: {e}")
|
| 112 |
+
return None # Return None if generation fails
|
| 113 |
+
|
| 114 |
+
# Generate images for each panel
|
| 115 |
+
comic_images = [generate_comic_image(panel, chosen_style) for panel in comic_panels]
|
| 116 |
+
|
| 117 |
+
# Remove None values if any images failed to generate
|
| 118 |
+
comic_images = [img for img in comic_images if img is not None]
|
| 119 |
+
|
| 120 |
+
if comic_images:
|
| 121 |
+
### --- STEP 7: Arrange Images in a Grid Based on Panel Count --- ###
|
| 122 |
+
grid_map = {3: (1, 3), 4: (2, 2), 5: (2, 3), 6: (2, 3)}
|
| 123 |
+
rows, cols = grid_map.get(len(comic_images), (1, len(comic_images)))
|
| 124 |
+
|
| 125 |
+
panel_width, panel_height = comic_images[0].size
|
| 126 |
+
comic_strip = Image.new("RGB", (panel_width * cols, panel_height * rows))
|
| 127 |
+
|
| 128 |
+
# Paste images in grid format
|
| 129 |
+
for i, img in enumerate(comic_images):
|
| 130 |
+
x_offset = (i % cols) * panel_width
|
| 131 |
+
y_offset = (i // cols) * panel_height
|
| 132 |
+
comic_strip.paste(img, (x_offset, y_offset))
|
| 133 |
+
|
| 134 |
+
# Display and save the comic strip
|
| 135 |
+
display(comic_strip)
|
| 136 |
+
comic_strip.save("comic_strip.png")
|
| 137 |
+
print("\n✅ Comic strip saved as 'comic_strip.png'")
|
| 138 |
+
else:
|
| 139 |
+
print("\n❌ No images were generated.")
|