Spaces:
Runtime error
Runtime error
Fix search bias + Layout
Browse files- app.py +52 -53
- create_index.py +6 -1
app.py
CHANGED
|
@@ -11,7 +11,7 @@ from pymatgen.core import Structure
|
|
| 11 |
from pymatgen.ext.matproj import MPRester
|
| 12 |
|
| 13 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 14 |
-
top_k =
|
| 15 |
|
| 16 |
# Load only the train split of the dataset
|
| 17 |
dataset = load_dataset(
|
|
@@ -61,20 +61,8 @@ import periodictable
|
|
| 61 |
|
| 62 |
map_periodic_table = {v.symbol: k for k, v in enumerate(periodictable.elements)}
|
| 63 |
|
| 64 |
-
# import re
|
| 65 |
-
#
|
| 66 |
-
# dataset_index = np.zeros((len(dataset), 118))
|
| 67 |
-
# import tqdm
|
| 68 |
-
#
|
| 69 |
-
# for i, row in tqdm.tqdm(enumerate(dataset), total=len(dataset)):
|
| 70 |
-
# for el in row["chemical_formula_descriptive"].split(" "):
|
| 71 |
-
# matches = re.findall(r"([a-zA-Z]+)([0-9]*)", el)
|
| 72 |
-
# el = matches[0][0]
|
| 73 |
-
# numb = int(matches[0][1]) if matches[0][1] else 1
|
| 74 |
-
# dataset_index[i][map_periodic_table[el]] = numb
|
| 75 |
-
|
| 76 |
-
|
| 77 |
dataset_index = np.load("dataset_index.npy")
|
|
|
|
| 78 |
|
| 79 |
# Initialize the Dash app
|
| 80 |
app = dash.Dash(__name__, assets_folder=SETTINGS.ASSETS_PATH)
|
|
@@ -83,16 +71,42 @@ server = app.server # Expose the server for deployment
|
|
| 83 |
# Define the app layout
|
| 84 |
layout = html.Div(
|
| 85 |
[
|
| 86 |
-
html.H1(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
html.Div(
|
| 88 |
[
|
| 89 |
html.Div(
|
| 90 |
[
|
| 91 |
-
html.H3("Search
|
| 92 |
dmp.MaterialsInput(
|
| 93 |
allowedInputTypes=["elements", "formula"],
|
| 94 |
hidePeriodicTable=False,
|
| 95 |
periodicTableMode="toggle",
|
|
|
|
| 96 |
showSubmitButton=True,
|
| 97 |
submitButtonText="Search",
|
| 98 |
type="elements",
|
|
@@ -106,11 +120,11 @@ layout = html.Div(
|
|
| 106 |
},
|
| 107 |
),
|
| 108 |
],
|
| 109 |
-
style={"margin-bottom": "20px"},
|
| 110 |
),
|
| 111 |
html.Div(
|
| 112 |
[
|
| 113 |
-
html.Label("Select Material"),
|
| 114 |
# dcc.Dropdown(
|
| 115 |
# id="material-dropdown",
|
| 116 |
# options=[], # Empty options initially
|
|
@@ -119,43 +133,32 @@ layout = html.Div(
|
|
| 119 |
dash.dash_table.DataTable(
|
| 120 |
id="table",
|
| 121 |
columns=[
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
for col in display_columns
|
| 124 |
],
|
| 125 |
data=[{}],
|
| 126 |
style_table={
|
| 127 |
"overflowX": "auto",
|
| 128 |
-
"height": "
|
| 129 |
"overflowY": "auto",
|
| 130 |
},
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
style={"margin-bottom": "20px"},
|
| 135 |
-
),
|
| 136 |
-
html.Button("Display Material", id="display-button", n_clicks=0),
|
| 137 |
-
html.Div(
|
| 138 |
-
[
|
| 139 |
-
html.Div(
|
| 140 |
-
id="structure-container",
|
| 141 |
-
style={
|
| 142 |
-
"width": "48%",
|
| 143 |
-
"display": "inline-block",
|
| 144 |
-
"verticalAlign": "top",
|
| 145 |
-
},
|
| 146 |
-
),
|
| 147 |
-
html.Div(
|
| 148 |
-
id="properties-container",
|
| 149 |
-
style={
|
| 150 |
-
"width": "48%",
|
| 151 |
-
"display": "inline-block",
|
| 152 |
-
"paddingLeft": "4%",
|
| 153 |
-
"verticalAlign": "top",
|
| 154 |
-
},
|
| 155 |
),
|
| 156 |
],
|
| 157 |
-
style={"margin-top": "
|
| 158 |
),
|
|
|
|
| 159 |
],
|
| 160 |
style={
|
| 161 |
"margin-left": "10px",
|
|
@@ -180,10 +183,7 @@ def search_materials(query):
|
|
| 180 |
numb = int(numb) if numb else 1
|
| 181 |
query_vector[map_periodic_table[el]] = numb
|
| 182 |
|
| 183 |
-
similarity = np.dot(dataset_index, query_vector) / (
|
| 184 |
-
np.linalg.norm(dataset_index) * np.linalg.norm(query_vector)
|
| 185 |
-
)
|
| 186 |
-
print(similarity[::-1][:top_k])
|
| 187 |
indices = np.argsort(similarity)[::-1][:top_k]
|
| 188 |
|
| 189 |
options = [dataset[int(i)] for i in indices]
|
|
@@ -206,7 +206,6 @@ def on_submit_materials_input(n_clicks, query):
|
|
| 206 |
return []
|
| 207 |
|
| 208 |
entries = search_materials(query)
|
| 209 |
-
print(len(entries))
|
| 210 |
|
| 211 |
return [{col: entry[col] for col in display_columns} for entry in entries]
|
| 212 |
|
|
@@ -217,11 +216,11 @@ def on_submit_materials_input(n_clicks, query):
|
|
| 217 |
Output("structure-container", "children"),
|
| 218 |
Output("properties-container", "children"),
|
| 219 |
],
|
| 220 |
-
Input("display-button", "n_clicks"),
|
| 221 |
Input("table", "active_cell"),
|
| 222 |
)
|
| 223 |
-
def display_material(
|
| 224 |
-
if
|
| 225 |
return "", ""
|
| 226 |
|
| 227 |
idx_active = active_cell["row"]
|
|
|
|
| 11 |
from pymatgen.ext.matproj import MPRester
|
| 12 |
|
| 13 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 14 |
+
top_k = 500
|
| 15 |
|
| 16 |
# Load only the train split of the dataset
|
| 17 |
dataset = load_dataset(
|
|
|
|
| 61 |
|
| 62 |
map_periodic_table = {v.symbol: k for k, v in enumerate(periodictable.elements)}
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
dataset_index = np.load("dataset_index.npy")
|
| 65 |
+
dataset_index = dataset_index
|
| 66 |
|
| 67 |
# Initialize the Dash app
|
| 68 |
app = dash.Dash(__name__, assets_folder=SETTINGS.ASSETS_PATH)
|
|
|
|
| 71 |
# Define the app layout
|
| 72 |
layout = html.Div(
|
| 73 |
[
|
| 74 |
+
html.H1(
|
| 75 |
+
html.B("Interactive Crystal Viewer"),
|
| 76 |
+
style={"textAlign": "center", "margin-top": "20px"},
|
| 77 |
+
),
|
| 78 |
+
html.Div(
|
| 79 |
+
[
|
| 80 |
+
html.Div(
|
| 81 |
+
id="structure-container",
|
| 82 |
+
style={
|
| 83 |
+
"width": "48%",
|
| 84 |
+
"display": "inline-block",
|
| 85 |
+
"verticalAlign": "top",
|
| 86 |
+
},
|
| 87 |
+
),
|
| 88 |
+
html.Div(
|
| 89 |
+
id="properties-container",
|
| 90 |
+
style={
|
| 91 |
+
"width": "48%",
|
| 92 |
+
"display": "inline-block",
|
| 93 |
+
"paddingLeft": "4%",
|
| 94 |
+
"verticalAlign": "top",
|
| 95 |
+
},
|
| 96 |
+
),
|
| 97 |
+
],
|
| 98 |
+
style={"margin-top": "20px"},
|
| 99 |
+
),
|
| 100 |
html.Div(
|
| 101 |
[
|
| 102 |
html.Div(
|
| 103 |
[
|
| 104 |
+
html.H3("Search Materials (eg. 'Ac,Cd,Ge' or 'Ac2CdGe3')"),
|
| 105 |
dmp.MaterialsInput(
|
| 106 |
allowedInputTypes=["elements", "formula"],
|
| 107 |
hidePeriodicTable=False,
|
| 108 |
periodicTableMode="toggle",
|
| 109 |
+
hideWildcardButton=True,
|
| 110 |
showSubmitButton=True,
|
| 111 |
submitButtonText="Search",
|
| 112 |
type="elements",
|
|
|
|
| 120 |
},
|
| 121 |
),
|
| 122 |
],
|
| 123 |
+
style={"margin-top": "20px", "margin-bottom": "20px"},
|
| 124 |
),
|
| 125 |
html.Div(
|
| 126 |
[
|
| 127 |
+
html.Label("Select Material to Display"),
|
| 128 |
# dcc.Dropdown(
|
| 129 |
# id="material-dropdown",
|
| 130 |
# options=[], # Empty options initially
|
|
|
|
| 133 |
dash.dash_table.DataTable(
|
| 134 |
id="table",
|
| 135 |
columns=[
|
| 136 |
+
(
|
| 137 |
+
{"name": display_names[col], "id": col}
|
| 138 |
+
if col != "energy"
|
| 139 |
+
else {
|
| 140 |
+
"name": display_names[col],
|
| 141 |
+
"id": col,
|
| 142 |
+
"type": "numeric",
|
| 143 |
+
"format": {"specifier": ".2f"},
|
| 144 |
+
}
|
| 145 |
+
)
|
| 146 |
for col in display_columns
|
| 147 |
],
|
| 148 |
data=[{}],
|
| 149 |
style_table={
|
| 150 |
"overflowX": "auto",
|
| 151 |
+
"height": "220px",
|
| 152 |
"overflowY": "auto",
|
| 153 |
},
|
| 154 |
+
style_header={"fontWeight": "bold", "backgroundColor": "lightgrey"},
|
| 155 |
+
style_cell={"textAlign": "center"},
|
| 156 |
+
style_as_list_view=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
),
|
| 158 |
],
|
| 159 |
+
style={"margin-top": "30px"},
|
| 160 |
),
|
| 161 |
+
# html.Button("Display Material", id="display-button", n_clicks=0),
|
| 162 |
],
|
| 163 |
style={
|
| 164 |
"margin-left": "10px",
|
|
|
|
| 183 |
numb = int(numb) if numb else 1
|
| 184 |
query_vector[map_periodic_table[el]] = numb
|
| 185 |
|
| 186 |
+
similarity = np.dot(dataset_index, query_vector) / (np.linalg.norm(query_vector))
|
|
|
|
|
|
|
|
|
|
| 187 |
indices = np.argsort(similarity)[::-1][:top_k]
|
| 188 |
|
| 189 |
options = [dataset[int(i)] for i in indices]
|
|
|
|
| 206 |
return []
|
| 207 |
|
| 208 |
entries = search_materials(query)
|
|
|
|
| 209 |
|
| 210 |
return [{col: entry[col] for col in display_columns} for entry in entries]
|
| 211 |
|
|
|
|
| 216 |
Output("structure-container", "children"),
|
| 217 |
Output("properties-container", "children"),
|
| 218 |
],
|
| 219 |
+
# Input("display-button", "n_clicks"),
|
| 220 |
Input("table", "active_cell"),
|
| 221 |
)
|
| 222 |
+
def display_material(active_cell):
|
| 223 |
+
if not active_cell:
|
| 224 |
return "", ""
|
| 225 |
|
| 226 |
idx_active = active_cell["row"]
|
create_index.py
CHANGED
|
@@ -3,6 +3,7 @@ import re
|
|
| 3 |
|
| 4 |
import numpy as np
|
| 5 |
import periodictable
|
|
|
|
| 6 |
from datasets import load_dataset
|
| 7 |
|
| 8 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
@@ -40,7 +41,6 @@ map_periodic_table = {v.symbol: k for k, v in enumerate(periodictable.elements)}
|
|
| 40 |
|
| 41 |
|
| 42 |
dataset_index = np.zeros((len(dataset), 118))
|
| 43 |
-
import tqdm
|
| 44 |
|
| 45 |
for i, row in tqdm.tqdm(enumerate(dataset), total=len(dataset)):
|
| 46 |
for el in row["chemical_formula_descriptive"].split(" "):
|
|
@@ -48,5 +48,10 @@ for i, row in tqdm.tqdm(enumerate(dataset), total=len(dataset)):
|
|
| 48 |
el = matches[0][0]
|
| 49 |
numb = int(matches[0][1]) if matches[0][1] else 1
|
| 50 |
dataset_index[i][map_periodic_table[el]] = numb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
np.save("dataset_index.npy", dataset_index)
|
|
|
|
| 3 |
|
| 4 |
import numpy as np
|
| 5 |
import periodictable
|
| 6 |
+
import tqdm
|
| 7 |
from datasets import load_dataset
|
| 8 |
|
| 9 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
dataset_index = np.zeros((len(dataset), 118))
|
|
|
|
| 44 |
|
| 45 |
for i, row in tqdm.tqdm(enumerate(dataset), total=len(dataset)):
|
| 46 |
for el in row["chemical_formula_descriptive"].split(" "):
|
|
|
|
| 48 |
el = matches[0][0]
|
| 49 |
numb = int(matches[0][1]) if matches[0][1] else 1
|
| 50 |
dataset_index[i][map_periodic_table[el]] = numb
|
| 51 |
+
dataset_index[i] = dataset_index[i] / np.sum(dataset_index[i])
|
| 52 |
+
|
| 53 |
+
dataset_index = (
|
| 54 |
+
dataset_index / np.linalg.norm(dataset_index, axis=1)[:, None]
|
| 55 |
+
) # Normalize vectors
|
| 56 |
|
| 57 |
np.save("dataset_index.npy", dataset_index)
|