Spaces:
Runtime error
Runtime error
| import math | |
| import os | |
| import argparse | |
| import json | |
| import torch | |
| import transformers | |
| from tqdm import tqdm | |
| from llava.conversation import conv_templates, SeparatorStyle | |
| from llava.constants import DEFAULT_X_START_TOKEN, DEFAULT_X_TOKEN, DEFAULT_X_END_TOKEN, X_TOKEN_INDEX | |
| from llava.mm_utils import get_model_name_from_path, tokenizer_X_token, KeywordsStoppingCriteria | |
| from llava.model.builder import load_pretrained_model | |
| from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM | |
| from llava.train.train import smart_tokenizer_and_embedding_resize | |
| def split_list(lst, n): | |
| """Split a list into n (roughly) equal-sized chunks""" | |
| chunk_size = math.ceil(len(lst) / n) # integer division | |
| return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
| def get_chunk(lst, n, k): | |
| chunks = split_list(lst, n) | |
| return chunks[k] | |
| def parse_args(): | |
| """ | |
| Parse command-line arguments. | |
| """ | |
| parser = argparse.ArgumentParser() | |
| # Define the command-line arguments | |
| parser.add_argument('--model_path', help='', required=True) | |
| parser.add_argument('--cache_dir', help='', required=True) | |
| parser.add_argument('--video_dir', help='Directory containing video files.', required=True) | |
| parser.add_argument('--gt_file_question', help='Path to the ground truth file containing question.', required=True) | |
| parser.add_argument('--gt_file_answers', help='Path to the ground truth file containing answers.', required=True) | |
| parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True) | |
| parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True) | |
| parser.add_argument("--num_chunks", type=int, default=1) | |
| parser.add_argument("--chunk_idx", type=int, default=0) | |
| parser.add_argument("--device", type=str, required=False, default='cuda:0') | |
| parser.add_argument('--model_base', help='', default=None, type=str, required=False) | |
| parser.add_argument("--model_max_length", type=int, required=False, default=2048) | |
| return parser.parse_args() | |
| def get_model_output(model, video_processor, tokenizer, video, qs, args): | |
| if model.config.mm_use_x_start_end: | |
| qs = DEFAULT_X_START_TOKEN['VIDEO'] + DEFAULT_X_TOKEN['VIDEO'] + DEFAULT_X_END_TOKEN['VIDEO'] + '\n' + qs | |
| else: | |
| qs = DEFAULT_X_TOKEN['VIDEO'] + '\n' + qs | |
| conv_mode = "llava_v1" | |
| args.conv_mode = conv_mode | |
| conv = conv_templates[args.conv_mode].copy() | |
| conv.append_message(conv.roles[0], qs) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = conv.get_prompt() | |
| video_tensor = video_processor.preprocess(video, return_tensors='pt')['pixel_values'][0].half().to(args.device) | |
| # print(video_tensor.shape) | |
| input_ids = tokenizer_X_token(prompt, tokenizer, X_TOKEN_INDEX['VIDEO'], return_tensors='pt').unsqueeze(0).to(args.device) | |
| stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
| keywords = [stop_str] | |
| stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
| ''' | |
| images (X_modalities) [ | |
| [img_feature, img_feature, video_feature, audio_feature], | |
| ['image', 'image', 'video', 'audio'] | |
| ] | |
| ''' | |
| with torch.inference_mode(): | |
| output_ids = model.generate( | |
| input_ids, | |
| images=[[video_tensor], ['video']], | |
| do_sample=True, | |
| temperature=0.2, | |
| max_new_tokens=1024, | |
| use_cache=True, | |
| stopping_criteria=[stopping_criteria]) | |
| input_token_len = input_ids.shape[1] | |
| n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() | |
| if n_diff_input_output > 0: | |
| print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') | |
| outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] | |
| outputs = outputs.strip() | |
| if outputs.endswith(stop_str): | |
| outputs = outputs[:-len(stop_str)] | |
| outputs = outputs.strip() | |
| print(outputs) | |
| return outputs | |
| def run_inference(args): | |
| """ | |
| Run inference on ActivityNet QA DataSet using the Video-ChatGPT model. | |
| Args: | |
| args: Command-line arguments. | |
| """ | |
| # Initialize the model | |
| model_name = get_model_name_from_path(args.model_path) | |
| tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) | |
| model = model.to(args.device) | |
| # Load both ground truth file containing questions and answers | |
| # with open(args.gt_file_question) as file: | |
| # gt_questions = json.load(file) | |
| # with open(args.gt_file_answers) as file: | |
| # gt_answers = json.load(file) | |
| gt_questions = json.load(open(args.gt_file_question, "r")) | |
| gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx) | |
| gt_answers = json.load(open(args.gt_file_answers, "r")) | |
| # gt_answers = get_chunk(gt_answers, args.num_chunks, args.chunk_idx) | |
| answers_file = os.path.join(args.output_dir, f"{args.output_name}.json") | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| ans_file = open(answers_file, "w") | |
| # Create the output directory if it doesn't exist | |
| if not os.path.exists(args.output_dir): | |
| os.makedirs(args.output_dir) | |
| output_list = [] # List to store the output results | |
| video_formats = ['.mp4', '.avi', '.mov', '.mkv'] | |
| # Iterate over each sample in the ground truth file | |
| index = 0 | |
| for sample in tqdm(gt_questions): | |
| video_name = sample['video_name'] | |
| question = sample['question'] | |
| id = sample['question_id'] | |
| answer = gt_answers[index]['answer'] | |
| index += 1 | |
| sample_set = {'id': id, 'question': question, 'answer': answer} | |
| # Load the video file | |
| for fmt in tqdm(video_formats): # Added this line | |
| temp_path = os.path.join(args.video_dir, f"v_{video_name}{fmt}") | |
| if os.path.exists(temp_path): | |
| video_path = temp_path | |
| # try: | |
| # Run inference on the video and add the output to the list | |
| output = get_model_output(model, processor['video'], tokenizer, video_path, question, args) | |
| sample_set['pred'] = output | |
| output_list.append(sample_set) | |
| # except Exception as e: | |
| # print(f"Error processing video file '{video_name}': {e}") | |
| ans_file.write(json.dumps(sample_set) + "\n") | |
| break | |
| ans_file.close() | |
| # Save the output list to a JSON file | |
| # with open(os.path.join(args.output_dir, f"{args.output_name}.json"), 'w') as file: | |
| # json.dump(output_list, file) | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| run_inference(args) | |