Spaces:
Runtime error
Runtime error
| import os | |
| import argparse | |
| import json | |
| from tqdm import tqdm | |
| # from video_chatgpt.eval.model_utils import initialize_model, load_video | |
| # from video_chatgpt.inference import video_chatgpt_infer | |
| from llava.eval.video.run_inference_video_qa import get_model_output | |
| from llava.mm_utils import get_model_name_from_path | |
| from llava.model.builder import load_pretrained_model | |
| def parse_args(): | |
| """ | |
| Parse command-line arguments. | |
| """ | |
| parser = argparse.ArgumentParser() | |
| # Define the command-line arguments | |
| parser.add_argument('--model_path', help='', required=True) | |
| parser.add_argument('--cache_dir', help='', required=True) | |
| parser.add_argument('--video_dir', help='Directory containing video files.', required=True) | |
| parser.add_argument('--gt_file', help='Path to the ground truth file.', required=True) | |
| parser.add_argument('--output_dir', help='Directory to save the model results JSON.', required=True) | |
| parser.add_argument('--output_name', help='Name of the file for storing results JSON.', required=True) | |
| # parser.add_argument("--model-name", type=str, required=True) | |
| parser.add_argument("--device", type=str, required=False, default='cuda:0') | |
| parser.add_argument('--model_base', help='', default=None, type=str, required=False) | |
| parser.add_argument("--model_max_length", type=int, required=False, default=2048) | |
| # parser.add_argument("--conv-mode", type=str, required=False, default='video-chatgpt_v1') | |
| # parser.add_argument("--projection_path", type=str, required=True) | |
| return parser.parse_args() | |
| def run_inference(args): | |
| """ | |
| Run inference on a set of video files using the provided model. | |
| Args: | |
| args: Command-line arguments. | |
| """# Initialize the model | |
| model_name = get_model_name_from_path(args.model_path) | |
| tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) | |
| model = model.to(args.device) | |
| # Load the ground truth file | |
| with open(args.gt_file) as file: | |
| gt_contents = json.load(file) | |
| # Create the output directory if it doesn't exist | |
| if not os.path.exists(args.output_dir): | |
| os.makedirs(args.output_dir) | |
| output_list = [] # List to store the output results | |
| # conv_mode = args.conv_mode | |
| video_formats = ['.mp4', '.avi', '.mov', '.mkv'] | |
| # Iterate over each sample in the ground truth file | |
| for sample in tqdm(gt_contents): | |
| video_name = sample['video_name'] | |
| sample_set = sample | |
| question = sample['Q'] | |
| try: | |
| # Load the video file | |
| for fmt in video_formats: # Added this line | |
| temp_path = os.path.join(args.video_dir, f"{video_name}{fmt}") | |
| if os.path.exists(temp_path): | |
| video_path = temp_path | |
| output = get_model_output(model, processor['video'], tokenizer, video_path, question, args) | |
| sample_set['pred'] = output | |
| output_list.append(sample_set) | |
| break | |
| except Exception as e: | |
| print(f"Error processing video file '{video_name}': {e}") | |
| # Save the output list to a JSON file | |
| with open(os.path.join(args.output_dir, f"{args.output_name}.json"), 'w') as file: | |
| json.dump(output_list, file) | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| run_inference(args) | |