pi-Qwen / app.py
Hansheng Chen
Add progress bars for Gradio demos
0e6e82a
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import os
import gradio as gr
import spaces
from diffusers import FlowMatchEulerDiscreteScheduler
from lakonlab.ui.gradio.create_text_to_img import create_interface_text_to_img
from lakonlab.pipelines.piqwen_pipeline import PiQwenImagePipeline
from huggingface_hub import login
login(token=os.getenv('HF_TOKEN'))
DEFAULT_PROMPT = ('Photo of a coffee shop entrance featuring a chalkboard sign reading "ฯ€-Qwen Coffee ๐Ÿ˜Š $2 per cup," '
'with a neon light beside it displaying "ฯ€-้€šไน‰ๅƒ้—ฎ". Next to it hangs a poster showing a beautiful '
'Chinese woman, and beneath the poster is written "eโ‰ˆ2.71828-18284-59045-23536-02874-71352".')
pipe = PiQwenImagePipeline.from_pretrained(
'Qwen/Qwen-Image',
torch_dtype=torch.bfloat16)
pipe.load_piflow_adapter(
'Lakonik/pi-Qwen-Image',
subfolder='gmqwen_k8_piid_4step',
target_module_name='transformer')
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( # use fixed shift=3.2
pipe.scheduler.config, shift=3.2, shift_terminal=None, use_dynamic_shifting=False)
pipe = pipe.to('cuda')
@spaces.GPU
def generate(
seed, prompt, width, height, steps,
progress=gr.Progress(track_tqdm=True)):
return pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
with gr.Blocks(analytics_enabled=False,
title='pi-Qwen Demo',
css='lakonlab/ui/gradio/style.css'
) as demo:
md_txt = '# pi-Qwen Demo\n\n' \
'Official demo of the paper [pi-Flow: Policy-Based Few-Step Generation via Imitation Distillation](https://arxiv.org/abs/2510.14974). ' \
'**Base model:** [Qwen-Image](https://huggingface.co/Qwen/Qwen-Image). **Fast policy:** GMFlow. **Code:** [https://github.com/Lakonik/piFlow](https://github.com/Lakonik/piFlow).'
gr.Markdown(md_txt)
create_interface_text_to_img(
generate,
prompt=DEFAULT_PROMPT,
steps=4, guidance_scale=None,
args=['last_seed', 'prompt', 'width', 'height', 'steps'])
demo.queue().launch()