Spaces:
Runtime error
Runtime error
| from mmengine.optim import LinearLR, MultiStepLR, OptimWrapper | |
| from mmengine.runner import EpochBasedTrainLoop, ValLoop, TestLoop | |
| from torch.optim import AdamW | |
| # training schedule for 50e | |
| train_cfg = dict( | |
| type=EpochBasedTrainLoop, | |
| max_epochs=12, | |
| val_interval=2, | |
| ) | |
| val_cfg = dict(type=ValLoop) | |
| test_cfg = dict(type=TestLoop) | |
| # learning rate | |
| param_scheduler = [ | |
| dict( | |
| type=LinearLR, | |
| start_factor=0.001, | |
| by_epoch=False, | |
| begin=0, | |
| end=500 | |
| ), | |
| dict( | |
| type=MultiStepLR, | |
| begin=0, | |
| end=12, | |
| by_epoch=True, | |
| milestones=[8, 11], | |
| gamma=0.1 | |
| ) | |
| ] | |
| _embed_multi = dict(lr_mult=1.0, decay_mult=0.0) | |
| optim_wrapper = dict( | |
| type=OptimWrapper, | |
| optimizer=dict( | |
| type=AdamW, | |
| lr=0.0001, | |
| weight_decay=0.05, | |
| eps=1e-8, | |
| betas=(0.9, 0.999) | |
| ), | |
| paramwise_cfg=dict( | |
| custom_keys={ | |
| 'backbone': dict(lr_mult=0.1, decay_mult=1.0), | |
| 'query_embed': _embed_multi, | |
| 'query_feat': _embed_multi, | |
| 'level_embed': _embed_multi, | |
| }, | |
| norm_decay_mult=0.0 | |
| ), | |
| clip_grad=dict(max_norm=0.01, norm_type=2) | |
| ) | |
| # Default setting for scaling LR automatically | |
| # - `enable` means enable scaling LR automatically | |
| # or not by default. | |
| # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). | |
| auto_scale_lr = dict(enable=True, base_batch_size=16) | |