LPX55 commited on
Commit
42c14c6
·
verified ·
1 Parent(s): f03575d

Update app_v5.py

Browse files
Files changed (1) hide show
  1. app_v5.py +22 -17
app_v5.py CHANGED
@@ -10,8 +10,8 @@ import io
10
  import moondream as md
11
  from transformers import T5EncoderModel
12
  from diffusers import FluxControlNetPipeline, FluxPipeline, AutoModel
13
- from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
14
- from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
15
  from diffusers.utils import load_image
16
  from PIL import Image
17
  from threading import Thread
@@ -44,25 +44,30 @@ try:
44
  except Exception as e:
45
  print(f"Error setting memory usage: {e}")
46
 
47
- quant_config_5_t5 = TransformersBitsAndBytesConfig(load_in_8bit=True,)
48
- text_encoder_2_8b = T5EncoderModel.from_pretrained(
49
- "LPX55/FLUX.1-merged_lightning_v2",
50
- subfolder="text_encoder_2",
51
- quantization_config=quant_config_5_t5,
52
- torch_dtype=torch.float16,
53
  )
54
 
55
- quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True,)
56
- transformer_8bit = FluxPipeline.from_pretrained(
57
- "LPX55/FLUX.1-merged_lightning_v2",
58
- subfolder="transformer",
59
- quantization_config=quant_config,
60
- torch_dtype=torch.float16,
61
- )
 
 
 
 
 
 
 
 
62
  pipe = FluxControlNetPipeline.from_pretrained(
63
  "LPX55/FLUX.1M-8step_upscaler-cnet",
64
- transformer=transformer_8bit,
65
- text_encoder_2=text_encoder_2_8b,
66
  torch_dtype=torch.float16,
67
  device_map="auto",
68
  )
 
10
  import moondream as md
11
  from transformers import T5EncoderModel
12
  from diffusers import FluxControlNetPipeline, FluxPipeline, AutoModel
13
+ from diffusers.quantizers import PipelineQuantizationConfig
14
+
15
  from diffusers.utils import load_image
16
  from PIL import Image
17
  from threading import Thread
 
44
  except Exception as e:
45
  print(f"Error setting memory usage: {e}")
46
 
47
+ pipeline_quant_config = PipelineQuantizationConfig(
48
+ quant_backend="bitsandbytes_4bit",
49
+ quant_kwargs={"load_in_4bit": True, "bnb_4bit_quant_type": "nf4", "bnb_4bit_compute_dtype": torch.bfloat16},
50
+ components_to_quantize=["transformer", "text_encoder_2"],
 
 
51
  )
52
 
53
+ # quant_config_5_t5 = TransformersBitsAndBytesConfig(load_in_8bit=True,)
54
+ # text_encoder_2_8b = T5EncoderModel.from_pretrained(
55
+ # "LPX55/FLUX.1-merged_lightning_v2",
56
+ # subfolder="text_encoder_2",
57
+ # quantization_config=quant_config_5_t5,
58
+ # torch_dtype=torch.float16,
59
+ # )
60
+
61
+ # quant_config = DiffusersBitsAndBytesConfig(load_in_8bit=True,)
62
+ # transformer_8bit = FluxPipeline.from_pretrained(
63
+ # "LPX55/FLUX.1-merged_lightning_v2",
64
+ # subfolder="transformer",
65
+ # quantization_config=quant_config,
66
+ # torch_dtype=torch.float16,
67
+ # )
68
  pipe = FluxControlNetPipeline.from_pretrained(
69
  "LPX55/FLUX.1M-8step_upscaler-cnet",
70
+ quantization_config=pipeline_quant_config,
 
71
  torch_dtype=torch.float16,
72
  device_map="auto",
73
  )