Spaces:
Running
on
Zero
Running
on
Zero
Update optimized.py
Browse files- optimized.py +37 -2
optimized.py
CHANGED
|
@@ -6,6 +6,31 @@ from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
|
|
| 6 |
import gradio as gr
|
| 7 |
from accelerate import init_empty_weights
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 10 |
|
| 11 |
good_vae = AutoencoderKL.from_pretrained(
|
|
@@ -35,8 +60,18 @@ pipe = FluxControlNetPipeline.from_pretrained(
|
|
| 35 |
print(f"VRAM used: {torch.cuda.memory_allocated()/1e9:.2f}GB")
|
| 36 |
# Proper CPU offloading sequence
|
| 37 |
pipe.enable_model_cpu_offload(device="cuda") # First enable offloading
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Handle xformers/SDP attention after offloading
|
| 42 |
try:
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
from accelerate import init_empty_weights
|
| 8 |
|
| 9 |
+
def self_attention_slicing(module, slice_size=3):
|
| 10 |
+
"""Modified from Diffusers' original for Flux compatibility"""
|
| 11 |
+
def sliced_attention(*args, **kwargs):
|
| 12 |
+
if "dim" in kwargs:
|
| 13 |
+
dim = kwargs["dim"]
|
| 14 |
+
else:
|
| 15 |
+
dim = 1
|
| 16 |
+
|
| 17 |
+
if slice_size == "auto":
|
| 18 |
+
# Automatic slicing based on Flux architecture
|
| 19 |
+
return module(*args, **kwargs)
|
| 20 |
+
|
| 21 |
+
output = torch.cat([
|
| 22 |
+
module(
|
| 23 |
+
*[arg[:, :, i:i+slice_size] if i == dim else arg
|
| 24 |
+
for arg in args],
|
| 25 |
+
**{k: v[:, :, i:i+slice_size] if k == dim else v
|
| 26 |
+
for k,v in kwargs.items()}
|
| 27 |
+
)
|
| 28 |
+
for i in range(0, args[0].shape[dim], slice_size)
|
| 29 |
+
], dim=dim)
|
| 30 |
+
|
| 31 |
+
return output
|
| 32 |
+
return sliced_attention
|
| 33 |
+
|
| 34 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 35 |
|
| 36 |
good_vae = AutoencoderKL.from_pretrained(
|
|
|
|
| 60 |
print(f"VRAM used: {torch.cuda.memory_allocated()/1e9:.2f}GB")
|
| 61 |
# Proper CPU offloading sequence
|
| 62 |
pipe.enable_model_cpu_offload(device="cuda") # First enable offloading
|
| 63 |
+
|
| 64 |
+
# 2. Then apply custom VAE slicing
|
| 65 |
+
if getattr(pipe, "vae", None) is not None:
|
| 66 |
+
# Method 1: Use official implementation if available
|
| 67 |
+
try:
|
| 68 |
+
pipe.vae.enable_slicing()
|
| 69 |
+
except AttributeError:
|
| 70 |
+
# Method 2: Apply manual slicing for Flux compatibility [source_id]pipeline_flux_controlnet.py
|
| 71 |
+
pipe.vae.decode = self_attention_slicing(pipe.vae.decode, 2)
|
| 72 |
+
|
| 73 |
+
# 3. Attention optimizations
|
| 74 |
+
pipe.enable_attention_slicing(1) # Mandatory for Flux
|
| 75 |
|
| 76 |
# Handle xformers/SDP attention after offloading
|
| 77 |
try:
|