Spaces:
Running
on
Zero
Running
on
Zero
| import logging | |
| import random | |
| import warnings | |
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| from diffusers import FluxControlNetModel, FluxPipeline, AutoencoderTiny, AutoencoderKL | |
| from transformers import T5Tokenizer | |
| from diffusers.pipelines import FluxControlNetPipeline | |
| from diffusers.utils import load_image | |
| from gradio_imageslider import ImageSlider | |
| from PIL import Image | |
| from huggingface_hub import snapshot_download, hf_hub_download | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 512px; | |
| } | |
| """ | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| device = "cuda" | |
| else: | |
| power_device = "CPU" | |
| device = "cpu" | |
| huggingface_token = os.getenv("HUGGINFACE_TOKEN") | |
| model_path = snapshot_download( | |
| repo_id="LPX55/FLUX.1-merged_uncensored", | |
| repo_type="model", | |
| ignore_patterns=["*.md", "*..gitattributes"], | |
| local_dir="FLUX.1-merged_uncensored", | |
| token=huggingface_token, # type a new token-id. | |
| ) | |
| # tokenizer_2 = T5Tokenizer.from_pretrained("LPX55/FLUX.1-merged_uncensored", subfolder="tokenizer_2", token=huggingface_token) | |
| # taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device) | |
| good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=huggingface_token).to(device) | |
| # Load pipeline | |
| controlnet = FluxControlNetModel.from_pretrained( | |
| "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16 | |
| ).to(device) | |
| pipe = FluxControlNetPipeline.from_pretrained( | |
| "LPX55/FLUX.1-merged_uncensored", controlnet=controlnet, torch_dtype=torch.bfloat16, vae=good_vae, token=huggingface_token, | |
| ) | |
| # pipe.load_lora_weights( | |
| # hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd" | |
| # ) | |
| # pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) | |
| pipe.to(device) | |
| MAX_SEED = 1000000 | |
| MAX_PIXEL_BUDGET = 1536 * 1536 | |
| torch.cuda.empty_cache() | |
| def process_input(input_image, upscale_factor, **kwargs): | |
| w, h = input_image.size | |
| w_original, h_original = w, h | |
| aspect_ratio = w / h | |
| was_resized = False | |
| if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET: | |
| warnings.warn( | |
| f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels." | |
| ) | |
| gr.Info( | |
| f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget." | |
| ) | |
| input_image = input_image.resize( | |
| ( | |
| int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor), | |
| int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor), | |
| ) | |
| ) | |
| was_resized = True | |
| # resize to multiple of 8 | |
| w, h = input_image.size | |
| w = w - w % 8 | |
| h = h - h % 8 | |
| return input_image.resize((w, h)), w_original, h_original, was_resized | |
| #(duration=42) | |
| def infer( | |
| seed, | |
| randomize_seed, | |
| input_image, | |
| num_inference_steps, | |
| upscale_factor, | |
| controlnet_conditioning_scale, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| true_input_image = load_image(input_image) | |
| input_image, w_original, h_original, was_resized = process_input( | |
| input_image, upscale_factor | |
| ) | |
| # rescale with upscale factor | |
| w, h = input_image.size | |
| control_image = input_image.resize((w * upscale_factor, h * upscale_factor)) | |
| generator = torch.Generator().manual_seed(seed) | |
| gr.Info("Upscaling image...") | |
| image = pipe( | |
| prompt="", | |
| control_image=control_image, | |
| controlnet_conditioning_scale=controlnet_conditioning_scale, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=3.5, | |
| height=control_image.size[1], | |
| width=control_image.size[0], | |
| generator=generator, | |
| ).images[0] | |
| if was_resized: | |
| gr.Info( | |
| f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size." | |
| ) | |
| # resize to target desired size | |
| image = image.resize((w_original * upscale_factor, h_original * upscale_factor)) | |
| image.save("output.jpg") | |
| # convert to numpy | |
| return [true_input_image, image, seed] | |
| with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo: | |
| # with gr.Column(elem_id="col-container"): | |
| gr.HTML("<center><h1>FLUX.1-Dev Upscaler</h1></center>") | |
| with gr.Row(): | |
| run_button = gr.Button(value="Run") | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| input_im = gr.Image(label="Input Image", type="pil") | |
| with gr.Column(scale=1): | |
| num_inference_steps = gr.Slider( | |
| label="Number of Inference Steps", | |
| minimum=6, | |
| maximum=50, | |
| step=1, | |
| value=8, | |
| ) | |
| upscale_factor = gr.Slider( | |
| label="Upscale Factor", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=4, | |
| ) | |
| controlnet_conditioning_scale = gr.Slider( | |
| label="Controlnet Conditioning Scale", | |
| minimum=0.1, | |
| maximum=1.5, | |
| step=0.1, | |
| value=0.6, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| result = ImageSlider(label="Input / Output", type="pil", interactive=True) | |
| examples = gr.Examples( | |
| examples=[ | |
| # [42, False, "examples/image_1.jpg", 28, 4, 0.6], | |
| [42, False, "examples/image_2.jpg", 28, 4, 0.6], | |
| # [42, False, "examples/image_3.jpg", 28, 4, 0.6], | |
| [42, False, "examples/image_4.jpg", 28, 4, 0.6], | |
| # [42, False, "examples/image_5.jpg", 28, 4, 0.6], | |
| # [42, False, "examples/image_6.jpg", 28, 4, 0.6], | |
| ], | |
| inputs=[ | |
| seed, | |
| randomize_seed, | |
| input_im, | |
| num_inference_steps, | |
| upscale_factor, | |
| controlnet_conditioning_scale, | |
| ], | |
| fn=infer, | |
| outputs=result, | |
| cache_examples="lazy", | |
| ) | |
| # examples = gr.Examples( | |
| # examples=[ | |
| # #[42, False, "examples/image_1.jpg", 28, 4, 0.6], | |
| # [42, False, "examples/image_2.jpg", 28, 4, 0.6], | |
| # #[42, False, "examples/image_3.jpg", 28, 4, 0.6], | |
| # #[42, False, "examples/image_4.jpg", 28, 4, 0.6], | |
| # [42, False, "examples/image_5.jpg", 28, 4, 0.6], | |
| # [42, False, "examples/image_6.jpg", 28, 4, 0.6], | |
| # [42, False, "examples/image_7.jpg", 28, 4, 0.6], | |
| # ], | |
| # inputs=[ | |
| # seed, | |
| # randomize_seed, | |
| # input_im, | |
| # num_inference_steps, | |
| # upscale_factor, | |
| # controlnet_conditioning_scale, | |
| # ], | |
| # ) | |
| gr.on( | |
| [run_button.click], | |
| fn=infer, | |
| inputs=[ | |
| seed, | |
| randomize_seed, | |
| input_im, | |
| num_inference_steps, | |
| upscale_factor, | |
| controlnet_conditioning_scale, | |
| ], | |
| outputs=result, | |
| show_api=False, | |
| # show_progress="minimal", | |
| ) | |
| demo.queue().launch(share=False, show_api=False) |