Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import spaces | |
| import os | |
| from diffusers.utils import load_image | |
| from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL | |
| from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig | |
| from transformers import T5EncoderModel | |
| from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig | |
| from peft import PeftModel, PeftConfig | |
| # from attention_map_diffusers import ( | |
| # attn_maps, | |
| # init_pipeline, | |
| # save_attention_maps | |
| # ) | |
| import gradio as gr | |
| huggingface_token = os.getenv("HUGGINFACE_TOKEN") | |
| MAX_SEED = 1000000 | |
| quant_config = TransformersBitsAndBytesConfig(load_in_8bit=True,) | |
| text_encoder_2_8bit = T5EncoderModel.from_pretrained( | |
| "LPX55/FLUX.1-merged_uncensored", | |
| subfolder="text_encoder_2", | |
| quantization_config=quant_config, | |
| torch_dtype=torch.bfloat16, | |
| token=huggingface_token | |
| ) | |
| good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=huggingface_token).to("cuda") | |
| # Load pipeline | |
| controlnet = FluxControlNetModel.from_pretrained( | |
| "jasperai/Flux.1-dev-Controlnet-Upscaler", | |
| torch_dtype=torch.bfloat16 | |
| ) | |
| pipe = FluxControlNetPipeline.from_pretrained( | |
| "LPX55/FLUX.1-merged_uncensored", | |
| controlnet=controlnet, | |
| torch_dtype=torch.bfloat16, | |
| vae=good_vae, | |
| text_encoder_2=text_encoder_2_8bit, | |
| token=huggingface_token | |
| ) | |
| adapter_id = "alimama-creative/FLUX.1-Turbo-Alpha" | |
| adapter_id2 = "XLabs-AI/flux-RealismLora" | |
| adapter_id3 = "enhanceaiteam/Flux-uncensored-v2" | |
| pipe.to("cuda") | |
| pipe.load_lora_weights(adapter_id, adapter_name="turbo") | |
| pipe.load_lora_weights(adapter_id2, adapter_name="real") | |
| pipe.load_lora_weights(adapter_id3, weight_name="lora.safetensors", adapter_name="enhance") | |
| pipe.set_adapters(["turbo", "real", "enhance"], adapter_weights=[0.9, 0.66, 0.6]) | |
| pipe.fuse_lora(adapter_names=["turbo", "real", "enhance"], lora_scale=1.0) | |
| pipe.unload_lora_weights() | |
| # pipe.enable_xformers_memory_efficient_attention() | |
| # save to the Hub | |
| pipe.push_to_hub("FLUX.1M-8step_upscaler-cnet") | |
| def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end): | |
| generator = torch.Generator().manual_seed(seed) | |
| # Load control image | |
| control_image = load_image(control_image) | |
| w, h = control_image.size | |
| w = w - w % 32 | |
| h = h - h % 32 | |
| control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR | |
| print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1])) | |
| with torch.inference_mode(): | |
| image = pipe( | |
| generator=generator, | |
| prompt=prompt, | |
| control_image=control_image, | |
| controlnet_conditioning_scale=controlnet_conditioning_scale, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance_scale, | |
| height=control_image.size[1], | |
| width=control_image.size[0], | |
| control_guidance_end=guidance_end | |
| ).images[0] | |
| return image | |
| # Create Gradio interface with rows and columns | |
| with gr.Blocks(title="FLUX ControlNet Image Generation", fill_height=True) as iface: | |
| gr.Markdown("# FLUX ControlNet Image Generation") | |
| gr.Markdown("Generate images using the FluxControlNetPipeline. Upload a control image and enter a prompt to create an image.") | |
| with gr.Row(): | |
| control_image = gr.Image(type="pil", label="Control Image", show_label=False) | |
| generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| prompt = gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt") | |
| scale = gr.Slider(1, 3, value=1, label="Scale", step=0.25) | |
| generate_button = gr.Button("Generate Image", variant="primary") | |
| with gr.Column(scale=1): | |
| seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1) | |
| steps = gr.Slider(2, 16, value=8, label="Steps") | |
| controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale") | |
| guidance_scale = gr.Slider(1, 20, value=3.5, label="Guidance Scale") | |
| guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End") | |
| with gr.Row(): | |
| gr.Markdown("**Tips:** Lorum ipsum") | |
| generate_button.click( | |
| fn=generate_image, | |
| inputs=[prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end], | |
| outputs=[generated_image] | |
| ) | |
| # Launch the app | |
| iface.launch() |