LPX55's picture
Update raw.py
d49d1bb verified
raw
history blame
4.67 kB
import torch
import spaces
import os
from diffusers.utils import load_image
from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import T5EncoderModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from peft import PeftModel, PeftConfig
# from attention_map_diffusers import (
# attn_maps,
# init_pipeline,
# save_attention_maps
# )
import gradio as gr
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
MAX_SEED = 1000000
quant_config = TransformersBitsAndBytesConfig(load_in_8bit=True,)
text_encoder_2_8bit = T5EncoderModel.from_pretrained(
"LPX55/FLUX.1-merged_uncensored",
subfolder="text_encoder_2",
quantization_config=quant_config,
torch_dtype=torch.bfloat16,
token=huggingface_token
)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=huggingface_token).to("cuda")
# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler",
torch_dtype=torch.bfloat16
)
pipe = FluxControlNetPipeline.from_pretrained(
"LPX55/FLUX.1-merged_uncensored",
controlnet=controlnet,
torch_dtype=torch.bfloat16,
vae=good_vae,
text_encoder_2=text_encoder_2_8bit,
token=huggingface_token
)
adapter_id = "alimama-creative/FLUX.1-Turbo-Alpha"
adapter_id2 = "XLabs-AI/flux-RealismLora"
adapter_id3 = "enhanceaiteam/Flux-uncensored-v2"
pipe.to("cuda")
pipe.load_lora_weights(adapter_id, adapter_name="turbo")
pipe.load_lora_weights(adapter_id2, adapter_name="real")
pipe.load_lora_weights(adapter_id3, weight_name="lora.safetensors", adapter_name="enhance")
pipe.set_adapters(["turbo", "real", "enhance"], adapter_weights=[0.9, 0.66, 0.6])
pipe.fuse_lora(adapter_names=["turbo", "real", "enhance"], lora_scale=1.0)
pipe.unload_lora_weights()
# pipe.enable_xformers_memory_efficient_attention()
# save to the Hub
pipe.push_to_hub("FLUX.1M-8step_upscaler-cnet")
@spaces.GPU
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
generator = torch.Generator().manual_seed(seed)
# Load control image
control_image = load_image(control_image)
w, h = control_image.size
w = w - w % 32
h = h - h % 32
control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2) # Resample.BILINEAR
print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
with torch.inference_mode():
image = pipe(
generator=generator,
prompt=prompt,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=steps,
guidance_scale=guidance_scale,
height=control_image.size[1],
width=control_image.size[0],
control_guidance_end=guidance_end
).images[0]
return image
# Create Gradio interface with rows and columns
with gr.Blocks(title="FLUX ControlNet Image Generation", fill_height=True) as iface:
gr.Markdown("# FLUX ControlNet Image Generation")
gr.Markdown("Generate images using the FluxControlNetPipeline. Upload a control image and enter a prompt to create an image.")
with gr.Row():
control_image = gr.Image(type="pil", label="Control Image", show_label=False)
generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt")
scale = gr.Slider(1, 3, value=1, label="Scale", step=0.25)
generate_button = gr.Button("Generate Image", variant="primary")
with gr.Column(scale=1):
seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
steps = gr.Slider(2, 16, value=8, label="Steps")
controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
guidance_scale = gr.Slider(1, 20, value=3.5, label="Guidance Scale")
guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
with gr.Row():
gr.Markdown("**Tips:** Lorum ipsum")
generate_button.click(
fn=generate_image,
inputs=[prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end],
outputs=[generated_image]
)
# Launch the app
iface.launch()