File size: 10,019 Bytes
c80eda9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fc95c6
 
c80eda9
 
 
 
 
 
ca4d7e4
c80eda9
 
 
 
 
 
 
ca4d7e4
 
c80eda9
 
 
 
cc343e2
 
0fc95c6
cc343e2
0fc95c6
c80eda9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b971b27
c80eda9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b971b27
c80eda9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# app_v4.py
import gradio as gr
import torch
import spaces
import os
import datetime
import io
import moondream as md
from diffusers.utils import load_image
from PIL import Image
from threading import Thread
from typing import Generator
from huggingface_hub import CommitScheduler, HfApi, logging
from debug import log_params, scheduler, save_image
logging.set_verbosity_debug()
from model_loader import safe_model_load

# Ensure device is set
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = 1000000

model_cache = {"models": None}
md_api_key = os.getenv("MD_KEY")
model = md.vl(api_key=md_api_key)

@spaces.GPU(duration=12)  # This function gets priority for GPU access
def load_warm_models():
    """Special function to keep models warm in ZeroGPU"""
    if model_cache["models"] is None:
        model_cache["models"] = safe_model_load()
        print(f"Model cache: {model_cache['models']}")
    return model_cache["models"]

# This wrapper keeps the models loaded and accessible
def get_model():
    """Get models from cache"""
    if model_cache["models"] is None:
        model_cache["models"] = load_warm_models()
        print(f"Model cache: {model_cache['models']}")

    return model_cache["models"]

# import subprocess
# # subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
@spaces.GPU()
def init_space():
    global pipe
    pipe = get_model()["pipeline"]
    return pipe

@spaces.GPU(duration=12)
@torch.no_grad()
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
    generator = torch.Generator().manual_seed(seed)
    # Load control image
    control_image = load_image(control_image)
    w, h = control_image.size
    w = w - w % 32
    h = h - h % 32
    control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2)  # Resample.BILINEAR
    print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
    print(f"PromptLog: {repr(prompt)}")
    with torch.inference_mode():
        image = pipe(
            generator=generator,
            prompt=prompt,
            control_image=control_image,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            num_inference_steps=steps,
            guidance_scale=guidance_scale,
            height=control_image.size[1],
            width=control_image.size[0],
            control_guidance_start=0.0,
            control_guidance_end=guidance_end,
        ).images[0]
        # print("Type: " + str(type(image)))
    return image

def combine_caption_focus(caption, focus):
    if caption is None:
        caption = ""
    if focus is None:
        focus = "highly detailed photo, raw photography."
    return (str(caption) + "\n\n" + str(focus)).strip()

def generate_caption(control_image):
    if control_image is None:
        return "Waiting for control image..."
    
    # Generate a detailed caption
    mcaption = model.caption(control_image, length="short")
    detailed_caption = mcaption["caption"]
    print(f"Detailed caption: {detailed_caption}")
    
    return detailed_caption

def generate_focus(control_image, focus_list):
    if control_image is None:
        return None
    if focus_list is None:
        return ""
    # Generate a detailed caption
    focus_query = model.query(control_image, "Please provide a concise but illustrative description of the following area(s) of focus: " + focus_list)
    focus_description = focus_query["answer"]
    print(f"Areas of focus: {focus_description}") 

    return focus_description

def process_image(control_image, user_prompt, system_prompt, scale, steps, 
                controlnet_conditioning_scale, guidance_scale, seed, 
                guidance_end, temperature, top_p, max_new_tokens, log_prompt):
    # Initialize with empty caption
    final_prompt = user_prompt.strip()
    # If no user prompt provided, generate a caption first
    if not final_prompt:
        # Generate a detailed caption
        print("Generating caption...")
        mcaption = model.caption(control_image, length="normal")
        detailed_caption = mcaption["caption"]
        final_prompt = detailed_caption
        yield f"Using caption: {final_prompt}", None, final_prompt
    
    # Show the final prompt being used
    yield f"Generating with: {final_prompt}", None, final_prompt
    
    # Generate the image
    try:
        image = generate_image(
            prompt=final_prompt,
            scale=scale,
            steps=steps,
            control_image=control_image,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            guidance_scale=guidance_scale,
            seed=seed,
            guidance_end=guidance_end
        )
        
        try:
            debug_img = Image.open(image.save("/tmp/" + str(seed) + "output.png"))
            save_image("/tmp/" + str(seed) + "output.png", debug_img)
        except Exception as e:
            print("Error 160: " + str(e))
        log_params(final_prompt, scale, steps, controlnet_conditioning_scale, guidance_scale, seed, guidance_end, control_image, image)
        yield f"Completed! Used prompt: {final_prompt}", image, final_prompt
    except Exception as e:
        print("Error: " + str(e))
        yield f"Error: {str(e)}", None, None
    
with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as demo:
    gr.Markdown("⚠️ WIP SPACE - UNFINISHED & BUGGY")
    # status_box = gr.Markdown("🔄 Warming up...")
    
    with gr.Row():
        with gr.Accordion():
            control_image = gr.Image(type="pil", label="Control Image", show_label=False)
        with gr.Accordion():
            generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False)
    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Textbox(lines=4, info="Enter your prompt here or wait for auto-generation...", label="Image Description")
            focus = gr.Textbox(label="Area(s) of Focus", info="e.g. 'face', 'eyes', 'hair', 'clothes', 'background', etc.", value="clothing material, textures, ethnicity")
            scale = gr.Slider(1, 3, value=1, label="Scale (Upscale Factor)", step=0.25)
            with gr.Row():
                generate_button = gr.Button("Generate Image", variant="primary")
                caption_button = gr.Button("Generate Caption", variant="secondary")
        with gr.Column(scale=1):
            seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
            steps = gr.Slider(2, 16, value=8, label="Steps", step=1)
            controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
            guidance_scale = gr.Slider(1, 30, value=3.5, label="Guidance Scale")
            guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
    with gr.Row():
        with gr.Accordion("Auto-Caption settings", open=False, visible=False):
            system_prompt = gr.Textbox(
                lines=4, 
                value="Write a straightforward caption for this image. Begin with the main subject and medium. Mention pivotal elements—people, objects, scenery—using confident, definite language. Focus on concrete details like color, shape, texture, and spatial relationships. Show how elements interact. Omit mood and speculative wording. If text is present, quote it exactly. Note any watermarks, signatures, or compression artifacts. Never mention what's absent, resolution, or unobservable details. Vary your sentence structure and keep the description concise, without starting with 'This image is…' or similar phrasing.",
                label="System Prompt for Captioning",
                visible=False  # Changed to visible
            )
            temperature_slider = gr.Slider(
                minimum=0.0, maximum=2.0, value=0.6, step=0.05,
                label="Temperature",
                info="Higher values make the output more random, lower values make it more deterministic.",
                visible=False  # Changed to visible
            )
            top_p_slider = gr.Slider(
                minimum=0.0, maximum=1.0, value=0.9, step=0.01,
                label="Top-p",
                visible=False  # Changed to visible
            )
            max_tokens_slider = gr.Slider(
                minimum=1, maximum=2048, value=368, step=1,
                label="Max New Tokens",
                info="Maximum number of tokens to generate. The model will stop generating if it reaches this limit.",
                visible=False  # Changed to visible
            )
        log_prompt = gr.Checkbox(value=True, label="Log", visible=False)  # Changed to visible
    
    gr.Markdown("**Tips:** 8 steps is all you need! Incredibly powerful tool, usage instructions coming soon.")

    caption_state = gr.State()
    focus_state = gr.State()
    log_state = gr.State()

    generate_button.click(
        fn=process_image,
        inputs=[
            control_image, prompt, system_prompt, scale, steps, 
            controlnet_conditioning_scale, guidance_scale, seed, 
            guidance_end, temperature_slider, top_p_slider, max_tokens_slider, log_prompt
        ],
        outputs=[log_state, generated_image, prompt]
    )
    control_image.input(
        generate_caption,
        inputs=[control_image],
        outputs=[caption_state]
    ).then(
        generate_focus,
        inputs=[control_image, focus],
        outputs=[focus_state]
    ).then(
        combine_caption_focus,
        inputs=[caption_state, focus_state],
        outputs=[prompt]
    )
    caption_button.click(
        fn=generate_caption,
        inputs=[control_image],
        outputs=[prompt]
    ).then(
        generate_focus,
        inputs=[control_image, focus],
        outputs=[focus_state]
    ).then(
        combine_caption_focus,
        inputs=[caption_state, focus_state],
        outputs=[prompt]
    )

init_space()
demo.launch(show_error=True)