File size: 4,673 Bytes
1250a66
 
aedf846
 
e5d1cff
d4b8499
 
 
6110d64
8c9f898
 
 
 
 
aedf846
 
f455561
1250a66
d4b8499
 
 
 
 
 
 
 
 
d939c81
e5d1cff
1250a66
 
aedf846
 
1250a66
 
e5d1cff
aedf846
 
e5d1cff
d4b8499
aedf846
1250a66
5fc685b
 
6110d64
5fc685b
1250a66
5fc685b
 
6110d64
 
 
5fc685b
7c9b0bf
5fc685b
d49d1bb
1250a66
aedf846
f455561
 
 
aedf846
57aaf0c
aedf846
f455561
 
87f19f6
19bf9cf
169a280
 
74ddeaf
169a280
 
 
 
 
 
74ddeaf
f455561
169a280
0d9cf7e
aedf846
1250a66
f845c63
d4b8499
f845c63
 
 
 
88260e2
 
d4b8499
88260e2
 
f455561
88260e2
f845c63
f455561
 
f845c63
f455561
 
87f19f6
f845c63
 
87f19f6
f845c63
 
 
f455561
f845c63
 
1250a66
aedf846
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch
import spaces
import os
from diffusers.utils import load_image
from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import T5EncoderModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from peft import PeftModel, PeftConfig
# from attention_map_diffusers import (
#     attn_maps,
#     init_pipeline,
#     save_attention_maps
# )
import gradio as gr
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
MAX_SEED = 1000000

quant_config = TransformersBitsAndBytesConfig(load_in_8bit=True,)
text_encoder_2_8bit = T5EncoderModel.from_pretrained(
    "LPX55/FLUX.1-merged_uncensored",
    subfolder="text_encoder_2",
    quantization_config=quant_config,
    torch_dtype=torch.bfloat16,
    token=huggingface_token
)

good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=huggingface_token).to("cuda")

# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
    "jasperai/Flux.1-dev-Controlnet-Upscaler",
    torch_dtype=torch.bfloat16
)
pipe = FluxControlNetPipeline.from_pretrained(
    "LPX55/FLUX.1-merged_uncensored",
    controlnet=controlnet,
    torch_dtype=torch.bfloat16,
    vae=good_vae,
    text_encoder_2=text_encoder_2_8bit,
    token=huggingface_token
)
adapter_id = "alimama-creative/FLUX.1-Turbo-Alpha"
adapter_id2 = "XLabs-AI/flux-RealismLora"
adapter_id3 = "enhanceaiteam/Flux-uncensored-v2"

pipe.to("cuda")
pipe.load_lora_weights(adapter_id, adapter_name="turbo")
pipe.load_lora_weights(adapter_id2, adapter_name="real")
pipe.load_lora_weights(adapter_id3, weight_name="lora.safetensors", adapter_name="enhance")
pipe.set_adapters(["turbo", "real", "enhance"], adapter_weights=[0.9, 0.66, 0.6])
pipe.fuse_lora(adapter_names=["turbo", "real", "enhance"], lora_scale=1.0)
pipe.unload_lora_weights()
# pipe.enable_xformers_memory_efficient_attention()
# save to the Hub
pipe.push_to_hub("FLUX.1M-8step_upscaler-cnet")

@spaces.GPU
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
    generator = torch.Generator().manual_seed(seed)

    # Load control image
    control_image = load_image(control_image)
    w, h = control_image.size
    w = w - w % 32
    h = h - h % 32
    control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2)  # Resample.BILINEAR
    print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
    with torch.inference_mode():
        image = pipe(
            generator=generator,
            prompt=prompt,
            control_image=control_image,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            num_inference_steps=steps,
            guidance_scale=guidance_scale,
            height=control_image.size[1],
            width=control_image.size[0],
            control_guidance_end=guidance_end
        ).images[0]
        
    return image

# Create Gradio interface with rows and columns
with gr.Blocks(title="FLUX ControlNet Image Generation", fill_height=True) as iface:
    gr.Markdown("# FLUX ControlNet Image Generation")
    gr.Markdown("Generate images using the FluxControlNetPipeline. Upload a control image and enter a prompt to create an image.")
    
    with gr.Row():
        control_image = gr.Image(type="pil", label="Control Image", show_label=False)
        generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False)
    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt")
            scale = gr.Slider(1, 3, value=1, label="Scale", step=0.25)
            generate_button = gr.Button("Generate Image", variant="primary")
        with gr.Column(scale=1):
            seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
            steps = gr.Slider(2, 16, value=8, label="Steps")
            controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
            guidance_scale = gr.Slider(1, 20, value=3.5, label="Guidance Scale")
            guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
            
    
    with gr.Row():
        gr.Markdown("**Tips:** Lorum ipsum")
    
    generate_button.click(
        fn=generate_image,
        inputs=[prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end],
        outputs=[generated_image]
    )

# Launch the app
iface.launch()