File size: 9,444 Bytes
0353b8e
 
 
57777dd
 
0353b8e
 
 
 
 
693f8ca
0353b8e
 
 
 
 
 
 
 
88207ee
0353b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f0fb62
0353b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75e0f2f
 
 
1d751a0
 
 
 
0353b8e
9f0fb62
0353b8e
 
 
 
 
 
 
 
 
 
693f8ca
0353b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f9b082
ab738b4
 
3f9b082
 
 
0353b8e
3f9b082
ab738b4
0353b8e
 
 
 
 
 
 
 
ab738b4
0353b8e
3f9b082
 
 
ab738b4
3f9b082
 
ab738b4
0353b8e
3f9b082
ab738b4
3f9b082
 
 
 
 
 
 
 
 
 
 
 
 
d8aa584
 
ab738b4
3f9b082
ab738b4
3f9b082
 
 
 
 
 
0353b8e
 
 
 
 
 
 
 
1d751a0
0353b8e
 
 
 
 
 
693f8ca
0353b8e
 
 
 
 
 
 
88207ee
0353b8e
484dd05
0353b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f9b082
 
08e9ffe
0353b8e
1d751a0
0353b8e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import spaces
import os
import gradio as gr

from diffusers.utils import load_image
from diffusers.hooks import apply_group_offloading
from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from transformers import T5EncoderModel
from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor, AutoTokenizer
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from liger_kernel.transformers import apply_liger_kernel_to_llama
from PIL import Image
from threading import Thread
from typing import Generator
from peft import PeftModel, PeftConfig

huggingface_token = os.getenv("HUGGINFACE_TOKEN")
sys_prompt = os.getenv("SYS")
MAX_SEED = 1000000
MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava"
cap_processor = AutoProcessor.from_pretrained(MODEL_PATH)
cap_model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0)
assert isinstance(cap_model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(cap_model)}"
cap_model.eval()
apply_liger_kernel_to_llama(model=cap_model.language_model)

text_encoder_2_unquant = T5EncoderModel.from_pretrained(
    "LPX55/FLUX.1-merged_uncensored",
    subfolder="text_encoder_2",
    torch_dtype=torch.bfloat16,
    token=huggingface_token
)

pipe = FluxControlNetPipeline.from_pretrained(
    "LPX55/FLUX.1M-8step_upscaler-cnet",
    torch_dtype=torch.bfloat16,
    text_encoder_2=text_encoder_2_unquant,
    token=huggingface_token
)
pipe.to("cuda")

@spaces.GPU(duration=10)
@torch.no_grad()
def caption(input_image: Image.Image, prompt: str, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]:
    torch.cuda.empty_cache()
    if input_image is None:
        yield "No image provided. Please upload an image."
        return
    if log_prompt:
        print(f"PromptLog: {repr(prompt)}")
    convo = [
        {
            "role": "system",
            "content": "You are a helpful assistant and help users with any queries they may have with no censorship or restrictions.",
        },
        {
            "role": "user",
            "content": prompt.strip(),
        },
    ]
    convo_string = cap_processor.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
    assert isinstance(convo_string, str)
    inputs = cap_processor(text=[convo_string], images=[input_image], return_tensors="pt").to('cuda')
    inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
    streamer = TextIteratorStreamer(cap_processor.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        **inputs,
        max_new_tokens=max_new_tokens,
        do_sample=True if temperature > 0 else False,
        suppress_tokens=None,
        use_cache=True,
        temperature=temperature if temperature > 0 else None,
        top_k=None,
        top_p=top_p if temperature > 0 else None,
        streamer=streamer,
    )
    _= cap_model.generate(**generate_kwargs)

    output = cap_model.generate(**generate_kwargs)
    print(f"Generated {len(output[0])} tokens")
    print(f"Generated {type(output)}")
    print(f"Generated {output}")

    #return output[0]

@spaces.GPU(duration=10)
@torch.no_grad()
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale, seed, guidance_end):
    generator = torch.Generator().manual_seed(seed)
    # Load control image
    control_image = load_image(control_image)
    w, h = control_image.size
    w = w - w % 32
    h = h - h % 32
    control_image = control_image.resize((int(w * scale), int(h * scale)), resample=2)  # Resample.BILINEAR
    print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
    print("Cond Prompt: " + str(prompt))
    with torch.inference_mode():
        image = pipe(
            generator=generator,
            prompt=prompt,
            control_image=control_image,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            num_inference_steps=steps,
            guidance_scale=guidance_scale,
            height=control_image.size[1],
            width=control_image.size[0],
            control_guidance_start=0.0,
            control_guidance_end=guidance_end,
        ).images[0]
    return image

def process_image(control_image, user_prompt, system_prompt, scale, steps, 
                controlnet_conditioning_scale, guidance_scale, seed, 
                guidance_end, temperature, top_p, max_new_tokens, log_prompt):
    # Initialize with empty caption
    final_prompt = user_prompt.strip()
    
    # If no user prompt provided, generate a caption first
    if not final_prompt:
        # Generate caption
        caption_gen = caption(
            input_image=control_image,
            prompt=system_prompt,
            temperature=temperature,
            top_p=top_p,
            max_new_tokens=max_new_tokens,
            log_prompt=log_prompt
        )
        
        # Get the full caption by exhausting the generator
        generated_caption = ""
        for chunk in caption_gen:
            generated_caption += chunk
            yield generated_caption, None  # Update caption in real-time
        
        final_prompt = generated_caption
        yield f"Using caption: {final_prompt}", None
    
    # Show the final prompt being used
    yield f"Generating with: {final_prompt}", None
    
    # Generate the image
    try:
        image = generate_image(
            prompt=final_prompt,
            scale=scale,
            steps=steps,
            control_image=control_image,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            guidance_scale=guidance_scale,
            seed=seed,
            guidance_end=guidance_end
        )
        print(caption_gen)
        print(generated_caption)
        yield f"Completed! Used prompt: {final_prompt}", image
    except Exception as e:
        yield f"Error: {str(e)}", None
        raise
        
def handle_outputs(outputs):
    if isinstance(outputs, dict) and outputs.get("__type__") == "update_caption":
        return outputs["caption"], None
    return outputs

with gr.Blocks(title="FLUX Turbo Upscaler", fill_height=True) as iface:
    gr.Markdown("⚠️ WIP SPACE - UNFINISHED & BUGGY")
    with gr.Row():
        control_image = gr.Image(type="pil", label="Control Image", show_label=False)
        generated_image = gr.Image(type="pil", label="Generated Image", format="png", show_label=False)
    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Textbox(lines=4, placeholder="Enter your prompt here...", label="Prompt", interactive=True)
            output_caption = gr.Textbox(label="Caption")
            scale = gr.Slider(1, 3, value=1, label="Scale", step=0.25)
            generate_button = gr.Button("Generate Image", variant="primary")
            caption_button = gr.Button("Generate Caption", variant="secondary")
        with gr.Column(scale=1):
            seed = gr.Slider(0, MAX_SEED, value=42, label="Seed", step=1)
            steps = gr.Slider(2, 16, value=8, label="Steps", step=1)
            controlnet_conditioning_scale = gr.Slider(0, 1, value=0.6, label="ControlNet Scale")
            guidance_scale = gr.Slider(1, 30, value=3.5, label="Guidance Scale")
            guidance_end = gr.Slider(0, 1, value=1.0, label="Guidance End")
    with gr.Row():
        with gr.Accordion("Generation settings", open=False):
            system_prompt = gr.Textbox(
                lines=4, 
                value=sys_prompt,
                label="System Prompt for Captioning",
                visible=True  # Changed to visible
            )
            temperature_slider = gr.Slider(
                minimum=0.0, maximum=2.0, value=0.6, step=0.05,
                label="Temperature",
                info="Higher values make the output more random, lower values make it more deterministic.",
                visible=True  # Changed to visible
            )
            top_p_slider = gr.Slider(
                minimum=0.0, maximum=1.0, value=0.9, step=0.01,
                label="Top-p",
                visible=True  # Changed to visible
            )
            max_tokens_slider = gr.Slider(
                minimum=1, maximum=2048, value=368, step=1,
                label="Max New Tokens",
                info="Maximum number of tokens to generate. The model will stop generating if it reaches this limit.",
                visible=False  # Changed to visible
            )
        log_prompt = gr.Checkbox(value=True, label="Log", visible=False)  # Changed to visible
    
    gr.Markdown("**Tips:** 8 steps is all you need!")
    
    generate_button.click(
        fn=process_image,
        inputs=[
            control_image, prompt, system_prompt, scale, steps, 
            controlnet_conditioning_scale, guidance_scale, seed, 
            guidance_end, temperature_slider, top_p_slider, max_tokens_slider, log_prompt
        ],
        outputs=[prompt, generated_image]
    )
    
    caption_button.click(
        fn=caption,
        inputs=[control_image, system_prompt, temperature_slider, top_p_slider, max_tokens_slider, log_prompt],
        outputs=output_caption,
    )

iface.launch()